Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T11:16:00.151Z Has data issue: false hasContentIssue false

Covalent Attachment of a Single Dextran Polymer Between the Tip of an Atomic Force Microscope and a Gold Surface

Published online by Cambridge University Press:  10 February 2011

M. Grandbois
Affiliation:
Lehrstuhl für Angewandte Physik, Ludwig-Maximilians-Universität, Amalienstrasse 54, D-80799, München, Germany
R. Décor
Affiliation:
Laboratoire de synthèse bioorganique, UMR 7514 CNRS Université Louis Pasteur de Strasbourg, Faculté de pharmacie, 74 route du Rhin, BP 24, 67401 Illkirch, France
M. Rief
Affiliation:
Lehrstuhl für Angewandte Physik, Ludwig-Maximilians-Universität, Amalienstrasse 54, D-80799, München, Germany
A. Wagner
Affiliation:
Laboratoire de synthèse bioorganique, UMR 7514 CNRS Université Louis Pasteur de Strasbourg, Faculté de pharmacie, 74 route du Rhin, BP 24, 67401 Illkirch, France
C. Mioskowski
Affiliation:
Laboratoire de synthèse bioorganique, UMR 7514 CNRS Université Louis Pasteur de Strasbourg, Faculté de pharmacie, 74 route du Rhin, BP 24, 67401 Illkirch, France
Hermann Gaub
Affiliation:
Lehrstuhl für Angewandte Physik, Ludwig-Maximilians-Universität, Amalienstrasse 54, D-80799, München, Germany
Get access

Abstract

A method for covalent immobilization of a single dextran polymer between a gold surface and the tip of an atomic force microscope (AFM) is presented. Carboxymethylated dextran immobilized on gold by epoxythiol chemistry was activated with N-hydroxysuccinimide (NHS) and N-ethyl-N'-(dimethylaminopropyl) carbodiimide hydrochloride (EDC) in order to make the dextran polymer reactive for the amino groups present on the previously aminosilanized AFM tip. By measuring force vs extension curves we have shown that it is possible to catch such an activated dextran polymer with an AFM tip through the formation of a covalent bond. Dextran polymers were attached even without any detectable indentation of the tip in the dextran-coated gold surface. In this so-called fly-fishing mode, attachment of multiple dextran polymers, which typically occurs when the tip is indented into the surface, are efficiently avoided.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Marszalek, P. E., Oberhauser, A. F., Pang, Y.-P., Fernandez, M., Nature 396, 661664 (1998).10.1038/25322Google Scholar
2. Rief, M., Oesterhelt, F., Heymann, B., Gaub, H. E., Science 275, 12951298 (1997).10.1126/science.275.5304.1295Google Scholar
3. Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, K., Schindler, H., Proc. Natl. Acad. Sci. USA 93, 34773481 (1996).10.1073/pnas.93.8.3477Google Scholar
4. Oesterhelt, F., Rief, M., Gaub, H. E., New J. Phys. 1, 6.1–6.11 (1999).10.1088/1367-2630/1/1/006Google Scholar
5. Li, H., Rief, M., Oesterhelt, F., Gaub, H. E., Advanced Materials 3, 316319 (1998).10.1002/(SICI)1521-4095(199803)10:4<316::AID-ADMA316>3.0.CO;2-A3.0.CO;2-A>Google Scholar
6. Châtelier, X., Senden, T. J., Joanny, J.-F., Meglio, J.-M. Di, Europhys. Lett. 41, 303308 (1998).10.1209/epl/i1998-00147-6Google Scholar
7. Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H., Gaub, H., Science 283, 17271730 (1999).10.1126/science.283.5408.1727Google Scholar
8. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., Gaub, H. E., Science 276, 11091112 (1997).10.1126/science.276.5315.1109Google Scholar
9. Rief, M., Clausen-Schaumann, H., Gaub, H. E., Nat. Struct. Biol. 6, 346349 (1999).Google Scholar
10. Oberhauser, A. F., Marszalek, P. E., Erickson, H. P., Fernandez, J. M., Nature 393, 181185 (1998).10.1038/30270Google Scholar
11. Johnsson, B., Lofas, S., Lindquist, G., Analytical Biochemistry 198, 268277 (1991).10.1016/0003-2697(91)90424-RGoogle Scholar
12. Butt, H.-J., Jaschke, M., Nanotechnology 6, 17 (1995).10.1088/0957-4484/6/1/001Google Scholar
13. Florin, E. L., et al., Biosensors andBioelectronics 10, 895901 (1995).10.1016/0956-5663(95)99227-CGoogle Scholar
14. Löfas, S., Pure & Appl. Chem. 67, 829834 (1995).10.1351/pac199567050829Google Scholar