Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T18:11:04.784Z Has data issue: false hasContentIssue false

Coupling of Electronic and Structural Properties of Hydrogen in Crystalline Silicon

Published online by Cambridge University Press:  26 February 2011

Wolfgang Csaszar
Affiliation:
Siemens Corporate Research and Development, Otto-Hahn-Ring 6, D-81739 Munich, Germany
Arthur L. Endrös
Affiliation:
Siemens Corporate Research and Development, Otto-Hahn-Ring 6, D-81739 Munich, Germany
Get access

Abstract

Theory has made great progress during recent years in calculating the fundamental properties of monatomic hydrogen in crystalline silicon. By applying the DLTS and DDLTS method we use the hydrogen-carbon complex which consists of an electronically inactive carbon atom on a substitutional lattice site and a hydrogen atom near the bond-center position to detect theoretically predicted properties of hydrogen in silicon. The results of two independent experiments show that there exists a coupling of the electronic and structural properties of monatomic hydrogen, as predicted by theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pankove, J.I. and Johnson, N.M., H in Semiconductors, Vol. 34 of SEMICONDUCTORS AND SEMIMETALLS (Academic Press, San Diego, 1991).Google Scholar
[2] Pearton, S.J., Corbett, J.W., and Stavola, M., H in Crystalline Semiconductors, Springer Series in Materials Science 16 (Springer Verlag, Berlin Heidelberg, 1992).Google Scholar
[3] Endrös, A., Phys. Rev. Lett. 63, 70 (1989).Google Scholar
[4] Endrös, A.L., Krühler, W. and Grabmaier, J., Physica B 170, 365 (1991).Google Scholar
[5] Holm, B., Bonde Nielsen, K., and Bech Nielsen, B., Phys. Rev. Lett. 66, 2360 (1991).Google Scholar
[6] Johnson, N.M. and Herring, C., Phys. Rev. B, 46, 15554 (1992–1).Google Scholar
[7] Johnson, N.M., Herring, C., and Van de Walle, C.G., Phys. Rev. Lett. 73, 130 (1994).Google Scholar
[8] Chang, K.J. and Chadi, D.J., Phys. Rev. B 40, 11644 (1989–1).Google Scholar
[9] Van de Walle, C.G., Phys. Rev. B 49, 4579 (1994–1).Google Scholar
[10] Van de Walle, C.G., in reference 1, pp. 595614, and references therein.Google Scholar
[11] Lichti, R.L., Chow, K.H., Estle, T.L., Hitti, B., Kiefl, R.F., Kreitzman, S.R., and Schneider, J.W., Materials Science Forum 143147, 915 (1994).Google Scholar
[12] Endrös, A.L., Krühler, W., and Koch, F., J. Appl. Phys. 72, 2264 (1992).Google Scholar
[13] Yoneta, M., Kamiura, Y., and Hashimoto, F., J. Appl. Phys. 70, 1295 (1991).Google Scholar
[14] Marie, Dj.M., Meier, P.F., and Estreicher, S.K., Phys. Rev. B 47, 3620 (1993–1).Google Scholar
[15] Haller, E.E., Joss, B., and Falicov, L.M., Phys. Rev. B 21, 4729 (1980).Google Scholar
[16] Denteneer, P.J., Van de Walle, C.G., and Pantelides, S.T., Phys. Rev. Lett. 62, 1884 (1989).Google Scholar
[17] Csaszar, W., diploma thesis, Technical University of Graz, 1992.Google Scholar
[18] Shockley, W. and Read, W.T. Jr., Phys. Rev. 87, 835 (1952).Google Scholar
[19] Csaszar, W. and Endrös, A.L., Phys. Rev. Lett. 73, 312 (1994).Google Scholar
[20] Hartke, J.L., J. Appl. Phys. 39, 4871 (1968).Google Scholar
[21] Vincent, G., Chantre, A., and Bois, D., J. Appl. Phys. 50, 5484 (1979).Google Scholar
[22] Makram-Ebeid, S., Appl. Phys. Lett. 37, 464 (1980).Google Scholar
[23] Haider, N.C. and Barnes, D.E., J. Vac. Sci. Technol. B 10, 94 (1992).Google Scholar
[24] Smith, R.A., Semiconductors (Cambridge University Press, London, 1959), p. 87.Google Scholar