Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T03:18:01.635Z Has data issue: false hasContentIssue false

CoSi2/Si(111) Interface Structure and its Influence on the Schottky Barrier

Published online by Cambridge University Press:  03 September 2012

J. P. Sullivan
Affiliation:
Univ. of Pennsylvania, Dept. of Materials Science, Philadelphia, PA 19104
W. R. Graham
Affiliation:
Univ. of Pennsylvania, Dept. of Materials Science, Philadelphia, PA 19104
F. Schrey
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D. J. Eaglesham
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. Kola
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. T. Tung
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

The interface structure and Schottky barrier height Of CoSi2/Si(111) interfaces may be controlled by manipulating the thin film growth conditions. Single crystal CoSi2 films on Si(111) were prepared by ultra-high vacuum processing, analyzed electrically by currentvoltage techniques, and characterized structurally by plan-view and cross-section high resolution transmission electron microscopy (HRTEM) and transm-ission electron diffraction (TED). Interfaces exhibiting n-type barrier heights ranging from 0.27 to 0.69 eV, and p-type barrier heights ranging from 0.43 eV to over 0.71 eV were prepared -by varying the processing conditions. HRTI3M and TED revealed the existence of a √3 × √3 interface reconstruction for the low barrier n-type/high barrier p-type samples. Possible models of the interface reconstruction are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tung, R. T. in Handbook on Semiconductors, Vol. 3: Materials, Properties, and Preparation, edited by Mahajan, S. (Elsevier, Amsterdam, 1993).Google Scholar
2. Tung, R. T., J. Vac. Sci. Technol. B 2, 465 (1984).Google Scholar
3. Mattheiss, L. F. and Hamann, D. R., Phys. Rev. B 37, 10623 (1988).Google Scholar
4. Fujitani, H. and Asano, S., Appl. Surf. Sci. 41/42, 164 (1989).Google Scholar
5. Känel, H. von, Henz, J., Ospelt, M., Hugi, J., Müller, E., Onda, N., and Grühle, A., Thin Solid Films 184, 295 (1990).Google Scholar
6. Kaiser, W. J., Hecht, M. H., Fathauer, R. W., Bell, L. D., Lee, E. Y., and Davis, L. C., Phys. Rev. B 44, 6546 (1991).Google Scholar
7. Sullivan, J. P., Tung, R. T., Eaglesham, D. J., Schrey, F., and Graham, W. R., J. Vac. Sci. Technol. B 11, 1564 (1993).Google Scholar
8. Spicer, W. E., Lindau, I., Skeath, P., Su, C. Y., and Chye, P. W., Phys. Rev. Lett. 44, 420 (1980).Google Scholar
9. Tersoff, J., Phys. Rev. Lett. 52, 465 (1984).Google Scholar
10. Mönch, W., Phys. Rev. Lett. 58, 1260 (1987).Google Scholar
10. Sze, S. M., Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981).Google Scholar
11. Tung, R. T., Phys. Rev. B 45, 13509 (1992).Google Scholar
12. Sullivan, J. P., Tung, R. T., Pinto, M. R., and Graham, W. R., J. Appl. Phys. 70, 7403 (1991).Google Scholar
13. Gibson, J. M., Bean, J. C., Poate, J. M., and Tung, R. T., Appl. Phys. Lett. 41, 818 (1982).Google Scholar
14. Hamann, D. R., Phys. Rev. Lett. 60, 313 (1988).Google Scholar
15. Fischer, A. E. M. J., Vlieg, E., Veen, J. F. van der, Clausnitzer, M., and Materlik, G., Phys. Rev. B 36, 4769 (1987).Google Scholar
16. Fischer, A. E. M. J., Gustafsson, T., and Veen, J. F. van der, Phys. Rev. B 37, 6305 (1988).CrossRefGoogle Scholar
17. Rossi, G., Jin, X., Santaniello, A., DePadova, P., and Chandesris, D., Phys. Rev. Lett. 62, 191 (1989).Google Scholar
18. Bulle-Lieuwma, C. W. T., Jong, A. F. de, Ommen, A. H. van, Veen, J. F. van der, and Vrijmoeth, J., Appl. Phys. Lett. 55, 648 (1989).Google Scholar
19. Hull, R., Hsieh, Y. F., White, A. E., and Short, K. T., Appl. Phys. Lett. 59, 3467 (1991).CrossRefGoogle Scholar
20. Buerger, M. J., Vector Space (John Wiley & Sons, New York, 1959).Google Scholar
21. Bennett, P. A., Copel, M., Cahill, D., Falta, J., and Tromp, R. M., Phys. Rev. Lett. 69, 1224 (1992).Google Scholar
22. Dandrea, R. G. and Duke, C. B., J. Vac. Sci. Technol. B 11, 1553 (1993).CrossRefGoogle Scholar