Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-29T11:38:04.088Z Has data issue: false hasContentIssue false

CoSi2 Precipitate Coarsening During Formation of Buried Epitaxial Cosi2 Layers By Ion Beam Synthesis

Published online by Cambridge University Press:  26 February 2011

R. Jebasinski
Affiliation:
Institut für Schicht-und Ionentechnik,
S. Mantl
Affiliation:
Institut für Schicht-und Ionentechnik,
K. Radermacher
Affiliation:
Institut für Schicht-und Ionentechnik,
P. Fichtner
Affiliation:
Escola de Engenharia UFRGS, 90000 Porto Alegre, Brazil
W. Jăger
Affiliation:
Institut für Festkörperforschung, Forschungszentrurn Jülich, D-5170 Jülich, Germany
Ch. Buchal
Affiliation:
Institut für Schicht-und Ionentechnik,
Get access

Abstract

The coarsening of CoSi2 precipitates and the microstructural evolution of (111) Si implanted with 200 keV Co+ ions at 350°C and fluences of 1×1016cm−2 and 6×1016cm−2 were investigated as a function of depth, annealing temperature and annealing time using Rutherford Backscattering Spectroscopy (RBS) and Transmission Electron Microscopy (TEM). After annealing cross-section TEM micrographs show a layered array of platelet-shaped precipitates with preferred facets on {111} planes. The fraction of Co-atoms, that were redistributed during the different annealing temperatures and times, has been used to determine an activation energy for the precipitate coarsening. By applying the Meechan-Brinkman and the change-of-slope methods, we obtained activation energies in the range of 3.2 – 3.6 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] White, A. E., Short, K. T., Dynes, R. C., Garno, J. P. and Gibson, J.M. Appl. Phys. Lett. 50 (1987), 95 Google Scholar
Mater. Res. Soc. Symp. Proc. 107 (1988), 3Google Scholar
[2] van Ommen, A. H, Bulle-Lieuwma, C. W. T., Ottenheim, J. J. M. and Theunissen, A. M. L., J. Appl. Phys. 67 (4) (1990), 1767 Google Scholar
[3] Kohlhof, K., Mantl, S., Stritzker, B. and Jäger, W., Appl. Surf. Sci. 38 (1989), 207 Google Scholar
[4] Fichtner, P., Jäger, W., Radermacher, K. and Mantl, S., JBMM90, Knoxville, Tennesse, USA, 9–14 sept. 1990, to be publ. in NIM B Google Scholar
[5] von Känel, H., Heinz, J., Ospelt, M., Hugi, J., Müller, E. and Onda, N. Thin Solid Films 184 (1990), 295 Google Scholar
[6] Schüppen, A., Mantl, S., Vescan, L. and Lüth, H. ESSDERC -90, Nottingham, Great Britain, 10–13 sept. 1990 Google Scholar
[7] Meechan, G. J. and Brinkman, J. A., Phys. Rev. 103 (1956), 1193 Google Scholar
[8] Overhauser, A. W., Phys. Rev. 90 (1953), 393 Google Scholar
[9] Ostwald, W., Z. Phys. Chem. 34 (1900), 495 Google Scholar
Ostwald, W. in: Analytische Chemie, 3rd ed. (Engelmann, Leipzig, 1901), 581 Google Scholar
[10] Lifshitz, I. M. and Slyozov, V. V., J. Phys. Chem. Solids 19 (1961), 35 Google Scholar
[11] Wagner, C., Z. Elektrochemie 65 (1961), 581 Google Scholar
[12] Weber, E. R., in Properties of Silicon, EMIS Datareviews Ser. 4 (INSPEC, London, 1988), 435 Google Scholar
[13] in Ref. 11, 416Google Scholar