Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-15T06:38:06.148Z Has data issue: false hasContentIssue false

Correlation Between In Situ Optical Emission Spectroscopy in a Reactive O2 / AR RF Magnetron Sputtering Discharge and PZT Thin Film Composition

Published online by Cambridge University Press:  10 February 2011

F. Ayguavives
Affiliation:
Laboratoire d'Etude des Matériaux en Films Minces, Université de Paris Sud, Plateau du Moulon, 91400 Orsay, France
P. Aubert
Affiliation:
Laboratoire d'Etude des Matériaux en Films Minces, Université de Paris Sud, Plateau du Moulon, 91400 Orsay, France
B. Ea-Kim
Affiliation:
Laboratoire d'Etude des Matériaux en Films Minces, Université de Paris Sud, Plateau du Moulon, 91400 Orsay, France
B. Agius*
Affiliation:
Laboratoire d'Etude des Matériaux en Films Minces, Université de Paris Sud, Plateau du Moulon, 91400 Orsay, France
Get access

Abstract

Lead zirconate titanate (PZT) thin films have been grown by rf magnetron sputtering on Si substrates from a metallic target of nominal composition Pb1.1(Zr0.4 Ti0.6 in a reactive argon / oxygen gas mixture. During plasma deposition, in situ Optical Emission Spectroscopy (OES) measurements show clearly a correlation between the evolution of characteristic atomic emission line intensities (Zr - 386.4 nm, Ti - 399.9 nm, Pb - 405.8 nm and O - 777.2 nm) and the thin-film composition determined by a simultaneous use of Rutherford Backscattering Spectroscopy (RBS) and Nuclear Reaction Analysis (NRA).

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Yi, G., Wo, Z., and Sayer, M. J. Appl. Phys. 64, 2717 (1988).Google Scholar
2 Ameen, M. S., Graettinger, T. M., Rou, S. H., Al-Shareef, H. N., Gifford, K. D., Auciello, O., and Kingon, A. I., Mater. Res. Soc. Symp. Proc. 200, 65 (1990).Google Scholar
3 Davis, G. M. and Gower, M. C., Appl. Phys. Lett. 55, 112 (1989).Google Scholar
4 Krupanidhi, S. B., Maffei, N., Sayer, M., and El-Assal, K., J. Appl. Phys. 54, 6601 (1983).Google Scholar
5 Sreenivas, K. and Sayer, M., J. Appl. Phys. 64, 1484 (1988).Google Scholar
6 Touzeau, M., Pagnon, D., Bretagne, J., Vacuum. To be published. Google Scholar
7 Berg, S., Blom, H-O., Larsson, T. and Nender, C., J. Vac. Sci. Technol. A5, 202 (1987).Google Scholar
8 Larsson, T., Blom, H-O., Nender, C. and Berg, S., J. Vac. Sci. Technol. A6, 1832 (1988).Google Scholar
9 Ershov, A., Pekker, L., Thin Solid Films 289, 140 (1996).Google Scholar
10 Guimaraes, F., Almeida, J. B. and Bretagne, J., Plasma Sources Sci. Technol. 2, 138 (1993).Google Scholar
11 Trennepohl, W. Jr, Bretagne, J., Gousset, G., Pagnon, D. and Touzeau, M., Plasma Sources Sci. Technol. 5, 607 (1993).Google Scholar
12 Pedley, J. B. and Marshall, , J. Phys. Chem. Ref. Data 12, 967, (1984).Google Scholar
13 Smith, F. W. and Ghidini, G., J. Electrochm. Soc., 129 (6), 1330 (1982).Google Scholar
14 Cattan, E. and Agius, B., J. Vac. Sci. Technol. A11, 2808 (1993).Google Scholar