Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T01:18:48.098Z Has data issue: false hasContentIssue false

Controlled Growth of ZnO films on Si Substrate and N-doping Behavior

Published online by Cambridge University Press:  01 February 2011

Y. F. Mei
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
Ricky K. Y. Fu
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
R. S. Wang
Affiliation:
Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong
K. W. Wong
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
H. C. Ong
Affiliation:
Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong
L. Ding
Affiliation:
Department of Physics, Hong Kong University of Science & Technology, Hong Kong
W. K. Ge
Affiliation:
Department of Physics, Hong Kong University of Science & Technology, Hong Kong
G. G. Siu
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
Paul K. Chu
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
Get access

Abstract

ZnO films with orientations of (001), (110), and (100) were fabricated on silicon by different substrate biases at low temperature. Dynamic cathodoluminescence (CL) dependence on electron bombardment revealed unstable Zn-N bonding if N2 was used as a predecessor. CL under various accelerated voltages showed the possible energies of Zn-N. N-related photoluminescence (PL) at low temperature confirmed that nitrogen was released after annealing. These N-doping behaviors agreed to the theoretical calculation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lee, H. W., Lau, S. P., Wang, Y. G., Tay, B. K., Hng, H. H., Thin Solid Films 458, 15 (2004).Google Scholar
2 Yu, S. F., Yuen, C., Lau, S. P., Lee, H. W., Appl. Phys. Lett. 84, 3244 (2004).Google Scholar
3 Wang, Y. G., Lau, S. P., Lee, H. W., Yu, S. F., Tay, B. K., Zhang, X. H., Tse, K. Y., Hng, H. H., J. Appl. Phys. 94, 1597 (2003).Google Scholar
4 Xu, X. L., Lau, S. P., Chen, J. S., Sun, Z., Tay, B. K., Chai, J. W., Mater. Sci. In Semi. Proc. 4, 617 (2001).Google Scholar
5 Mei, Y. F., Fu, R. K.Y., Siu, G. G., Chu, P. K., Li, Z. M., Yang, C. L., Ge, W. K., Tang, Z. K., Cheung, W. Y., and Wong, S. P., Mater. Sci. In Semi. Proc. 7, 459 (2004).Google Scholar
6 Mei, Y. F., Siu, G. G., , Ricky Fu, K. Y., Wong, K. W., Chu, P. K., Lai, C. W., Ong, H. C., Nuclear Instruments and Methods in Physics Research B (in press).Google Scholar
7 Chu, P. K., Qin, S., Chan, C., Cheung, N. W., and Larson, L. A., Mat. Sci. Engin.: Reports 17, 207 (1996).Google Scholar
8 Chu, P. K., Tang, B. Y., Wang, L. P., Wang, X. F., Wang, S. Y., and Huang, N., Rev. Sci. Instrum. 72, 1660 (2001).Google Scholar
9 Ong, H. C., Li, A. S. K., Du, G. T., Appl. Phys. Lett. 78, 2667 (2001).Google Scholar
10 Meyer, B. K., Alves, H., Hofmann, D. M., Kriegseis, W., Forster, D., Bertram, F., Christen, J., Hoffmann, A., Straâburg, M., Dworzak, M., Haboeck, U., Rodina, A. V., Phys. Stat. Sol. (b) 241, 231 (2004).Google Scholar
11 Garces, N. Y., Wang, L. J., Giles, N. C., and Halliburton, L. E., Cantwell, G. and Eason, D. B., J. Appl. Phys. 94, 519 (2003).Google Scholar
12 Zeuner, A., Alves, H., Hofmann, D. M., Meyer, B. K., Hoffmann, A., Haboeck, U., Strassburg, M., and Dworzak, M., phys. stat. sol. (b) 234, R7 (2002).Google Scholar
13 Wang, L. G., Zunger, A., Phys. Rev. Lett. 90, 256401 (2003).Google Scholar
14 Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S. F., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H., Kawasaki, M., Nature Materials 4, 42 (2005).Google Scholar