Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T03:42:11.169Z Has data issue: false hasContentIssue false

Control of Thin Film Materials Properties Used in High Density Multichip Interconnect

Published online by Cambridge University Press:  21 February 2011

J.J.H. Rechell*
Affiliation:
Polycon, 2686-B Johnson Dr. Ventura, CA, 93003
Get access

Abstract

Most literature on High Density Multichip Interconnect (HDMI) focuses almost exclusively on processing of the organic dielectric. Nevertheless, it is only one of the components in High Density Multichip Modules.

Substrate properties, metal dielectric adhesion, internal stresses in the various films, and many other physico-chemical properties of the materials, can all be affected by neighbouring layers or process parameters improperly identified. Thus, in the course of process development, the real causes of difficulties and observed phenomenas can easily be misconstrued.

This paper reviews some of the relationships between the properties of the thin film metallization and their effects on the dielectric layers. It also points out to some of the difficulties that can occur when treating the dielectric and the metallic layers as separate issues.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bartlett, C.J., Segelken, J.M., Teneketges, N.A., IEEE Trans. Compon. Hybrids and Manuf. CHMT-10,647 (1987)Google Scholar
2. Neugebauer, C.A., Carlson, R.O., IEEE Trans. Compon. Hybrids and Manuf CHMT-12 184 (1987)Google Scholar
3. Reche, J.J.H., Proc. Nat. Electr. Packag. and Product. Conf., (NEPCON West) p. 1308 (1989)Google Scholar
4. Hagge, J.K., Proc. Nat. Electr. Packag. and Product. Conf., (NEPCON West) p. 1271 (1989)Google Scholar
5. Blackburn, E.C., Proc. 2nd Intern. SAMPE Electr. Conf., Seattle, p. 1, (1988)Google Scholar
6. Hagge, J.K, IEEE 38th Electron. Compon. Conf, Los Angeles, p.282 (1988)Google Scholar
7. Scheinfein, M.R., Liao, J.C., Palusinski, D.A., J.L. Prince IEEE Trans. Compon. Hybrids and Manuf. CHMT-10 303 (1987)Google Scholar
8. Gupta, K.C., Garg, R., Chadha, R., ”Computer-Aided Design of Microwave Circuits’ Artech House Inc., (1981)Google Scholar
8. Milek, J.T., ‘Polvimide Plastics, A State-of-The-Art Report’, S-8 Electronic Properties Info. Center, Hughes Aircraft Co., Oct 1965 Google Scholar
9. Licari, J.J., in ‘Plastic Coatings for ElectronicsMcGraw-Hill, Inc. (1970)Google Scholar
10. Santoro, C.J., Tolliver, D.L., Proc. IEEE, 59, 1403 (1971)Google Scholar
11. Sato, K., Harada, S., Salki, A., Kimura, T., Okubo, T., Mukai, K., IEEE Trans. Parts, Hybr., Packag., PHP-9 176, (1973)Google Scholar
12. Crider, C. A. in ‘Thin Film Interfaces and InteractionsElectrochem. Soc., Princeton N.J., vol.802, (1980)Google Scholar
13. Tromp, R.M., LeGoues, F.K., Ho, P.S., J. Vac. Sc. Techn., A–3, 782, (1985)Google Scholar
14. Shanker, K., MacDonald, J.R., J. Vac. Sc. Techn., A–5 2894 (1987)Google Scholar
15. Saiki, A., Harada, S., Oba, Y., US Patent #4,040,083 (1977)Google Scholar
16. Linde, H.G., J. Polymer Sc., 20, 1031 (1982)Google Scholar
17. Suryanarayana, D., Mittal, K.L., J. Appl. Polymer Sc., 29, 2039 (1984)Google Scholar
18. Finegan, J. D., Hoffman, R.W., Trans. Eigth Nat. Symp. on Vac. Techn., Pergamon Press, p. 935 (1981)Google Scholar
19. Stoney, G.G., Proc. Royal Soc. London, ser. A, 82, 172 (1909)Google Scholar
20. Townsend, P.H., Barnett, D.M., J. Appl. Phys., 62, 4438 (1987)Google Scholar
21. Hoffman, R.W., Phys. of Thin-Films, 3, 211 (1966)Google Scholar
22. Alexander, P.M., Hoffman, R.W., I. Vac. Sc. Techn., 13, 96 (1976)Google Scholar
23. Chapman, B. in “Glow Discharge Processes”, p.186, J. Wiley and Sons (1980)Google Scholar
24. Clarke, P., US Patent #3,616,450 (1971)Google Scholar
25. Hoffman, D.W., I. Vac. Sc. Techn., 20, 355 (1982)Google Scholar
26. Movchan, B.A., Demchischin, A.V., Phys. Met. Metallogr. USSR, 28, 83 (1969)Google Scholar
27. Thornton, J.A., J. Vac. Sc. Techn., A 4, 3059 (1986)Google Scholar
28. Hoffman, D.W., Thornton, J.A., J. Vac. Sc. Techn., 16, 134 (1979)Google Scholar
29. Hoffman, D.W., Thornton, J.A., J. Vac. Sc. Techn., 18, 203 (1981)Google Scholar
30. Novicki, R.S. J. Vac. Sc. Techn., 17, 384 (1981)Google Scholar
31. Hoffman, D.W., J. Vac. Sc. Techn., 17,380 (1981)Google Scholar
32. Vossen, J.L., O'Neill, J.J., RCA Review, 29, 566 (1968)Google Scholar
33. Mattox, D.M., Electrochem. Techn., 2, 295 (1964)Google Scholar
34. Rossnagel, S.M., Gilstray, P., Rujkorakern, R., J. Vac. Sc. Techn., 21, 1045 (1982)Google Scholar
35. Messier, R., I. Vac. Sc. Techn.,A4, 490 (1986)Google Scholar
36. Craig, S., Harding, G.L., J. Vac. Sc. Techn., 19, 205 (1981)Google Scholar
37. Lamont, L.T., Solid-State Techn., 22, #9, 107 (1979)Google Scholar
38. Thornton, J.A., J. Vac. Sc. Techn., A4, 3059 (1986)Google Scholar
39. Hartsough, L.D., Denison, D.R., Solid-State Techn., 22 #12, p.66(1979)Google Scholar