Skip to main content Accessibility help
×
Home

Continuum imit of a tep Flow odel of Epitaxial Growth

  • R.V. Kohn (a1), T.S. Lo (a1) and N.K. Yip (a2)

Abstract

We examine a class of step ow models of epitaxial growth obtained from a Burton-Cabrera-Frank (BCF) type approach in one space dimension. ur goal is to derive a consistent contin uummodel for the ev olutionof the lm surface. Away from peaks and valleys, the surface height solves a Hamilton- acobi equation (H E). he peaks are free boundaries for this H E. heir evolution must be speci ed by boundary conditions re ecting the microscopic physics of nucleation. e investigate this boundary condition by numerical simulation of the step ow dynamics using a simple n ucleationlaw. ur results rev ealthe presence of sp ecial structures in the pro le near a peak; we discuss the relationship between these structures and the contin uumequation. e further address the importance of ev aporationfor matching the local behavior near the peak to the solution of the contin uum equation.

Copyright

References

Hide All
1. impinelli, A. and Villain, J., Physics of Crystal Growth. (Cambridge niversit y Press, 1998)
2. Villain, J., J. de hysique 1, 19 (1991); O. Pierre-Louis, C. Misbah, Y. Saito, J. Krug and P. Politi, Phys. ev. ett. 80, 4221 (1998).
3. oliti, P.P. and Villain, J., Phys. Rev. B 54, 5114 (1996).
4. vedensky, D.D., Zangwill, A., Luse, C.N. andWilby, M.R., Phys. Rev. E 48, 852 (1993).
5. Burton, W.K., Cabrera, N. and Frank, F., Phil. Trans. Roy. Soc. 243, 299 (1951).
6. , W. E and Yip, N.K., J. Stat. Phys. 104, 221 (2001).
7. Evans, L.C., Partial Di erential Equation, Graduate tudies in Mathematics, Vol. 19 (American athematical Society, 1998)
8. Schulzeand, T.. Kohn, R.V., Physica D 132, 520 (1999).
9. Elkinani, I. and Villain, J., J. de Physique 4, 949 (1994).
10. Krug, J., Politi, P. and Michely, T., Phys. Rev. B 61, 14037 (2000); J. Krug, Eur. Phys. J.B B 18, 713 (2000).
11. Krug, J., J. Stat. Phys. 87, 505 (1997).
12. Šmilauer, P., Rost, M. and Krug, J., Phys. Rev. E 59, 6263 (1999).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed