Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-13T15:54:09.731Z Has data issue: false hasContentIssue false

Consequences of Strain and Growth Kinetics on Growth Modes and Dislocation Formation in Strained Layer Epitaxy

Published online by Cambridge University Press:  16 February 2011

Jasprit Singh*
Affiliation:
Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, MI 48109-2122.
Get access

Abstract

We examine the growth modes of compound semiconductors grown by molecular beam epitaxy in lattice matched and strained layers. While in lattice matched layers it is possible to grow in the layer by layer mode by choosing proper growth conditions, in strained layers we find that for large strain, it is not possible to do so. This is due to the competition between surface strain energy which favors 3D growth and surface chemical energy which favors a layer by layer growth mode. The growth mode is shown to have significant effects on the nature of the dislocations generated beyond critical thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fisher, R., Masselink, W. T., Klein, J., Henderson, T., McGillen, T. C., Klein, M. V., Morkoc, H., Mazur, J., and Washburn, J., J. Appl. Phys. 58, 374 (1985).10.1063/1.335687Google Scholar
2. Uppal, P. N. and Kroemer, H., J. Appl. Phys. 58, 2195 (1985).10.1063/1.335987Google Scholar
3. Hashimoto, A., Kawarada, Y., Kamijohn, T., Akiyama, M., Watanabe, N., and Sakuta, M., Appl. Phys. Lett. 48, 1617 (1986).10.1063/1.96835Google Scholar
4. Kolodziejski, L., Gunshor, R. C., Otsuka, N., Zheng, X., Cheng, S. K., and Nurmikko, A. V., Appl. Phys. Lett. 47, 882 (1985).10.1063/1.95964Google Scholar
5. Osbourn, G., 3. Schirber, Drummond, T., Dawson, L., Doyle, B., and Fritz, I., Appl. Phys. Lett. 49, 731, 1986.10.1063/1.97582Google Scholar
6. Osbourn, G., J. Vac-Sci. Technol. 53, 1586 (1985)Google Scholar
7. Jaffe, M. and Singh, J., J. Appl. Phys. 64, 1988.Google Scholar
8. Ketterson, S. A., Masselink, W., Gedymin, J., Klein, J., Peng, C., Kopp, W., Morkoc, H., and Gleason, K., Trans. Elect. Dev. 33, 564 (1986).10.1109/T-ED.1986.22533Google Scholar
9. Kern, R., Lay, G.Le, and Metois, J. J., in Current Topics in Material Science, Vol.3 ed. Kaldis, E (North Holland, Amsterdam) p. 131 (1979).Google Scholar
10. Venables, J. A., Spiller, G. D. T., and Hanbucken, M., Rep. Prog. Phys. 47, 399 (1984).10.1088/0034-4885/47/4/002Google Scholar
11. For a review, sec., Wortis, M., in Fundamental Problems in Statistical Mechanics Vol 6, ed., Cohen, E. G. D. (North Holland, Amsterdam) p. 87 (1985).Google Scholar
12. Singh, J. and Bajaj, K.K., J. Vac. Sci. Technol. B 2, 276 (1984).10.1116/1.582804Google Scholar
13. Singh, J. and Bajaj, K.K., J. Vac. Sci. Technol. B 2, 576 (1984).10.1116/1.582841Google Scholar
14. Singh, J. and Bajaj, K.K., J. Vac. Sci. Technol. B 3, 520 (1985).10.1116/1.583166Google Scholar
15. Ghaisas, S. V. and Madhukar, A., Phys. Rev. Lett. 56, 1066 (1986).10.1103/PhysRevLett.56.1066Google Scholar
16. Singh, J. and Bajaj, K. K., Superlattices Microstructures 2, 185 (1986).10.1016/0749-6036(86)90018-2Google Scholar
17. Clarke, S. and Uvedensky, D. W., Appl. Phys. Lett. 51, 340 (1987).10.1063/1.98434Google Scholar
18. Neave, J. H., Dobson, P. J., Joyce, B. A., and Zheng, J., Appl. Phy. Lett 47, 100 (1985).10.1063/1.96281Google Scholar
19. Van Hove, J. M., Pukite, P. R., Whaley, G. J., Wowchak, A. M., and Cohen, P.I., J. Vac. Sci. Technol. B3, 1116 (1985).10.1116/1.583064Google Scholar
20. Heckingbottom, R., Todd, C. J., and Davies, G. J., J. Electrochem, Soc. 127, 444 (1980).10.1149/1.2129685Google Scholar
21. Van Hove, J. M., Pukite, P. R., Cohen, P. I., and Lent, C. S., J. Vac. Sci. Technol. A1, 609 (1983).10.1116/1.571968Google Scholar
22. Berger, P., Bhattacharya, P. K. and Singh, J., J. Appl. Phys. 61, 2856 (1987).10.1063/1.337880Google Scholar
23. Frank, F. C. and Van der Merwe, J. H., Proc. Royal Soc. London Sec. A 198, 205 (1949); 198, 216 (1949).Google Scholar
24. Ball, C. A. B. and Van der Merwe, J. H., Dislocations in Solids 6, 121 (1983).Google Scholar
25. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
26. Jesser, W. A. and Van der Merwe, J. H., J. Appl. Phys. 63, 1928 (1988).10.1063/1.341120Google Scholar
27. Dodson, B. W. and Taylor, P. A., Appl. Phys. Lett. 49, 1360 (1986).10.1063/1.97066Google Scholar
28. Tsao, J. Y. and Dodson, B. W., Appl. Phys. Lett 53, 848 (1988).10.1063/1.100091Google Scholar
29. Whaley, G. and Cohen, P., J. Vac Sci. Technol. B6, 625 (1988).10.1116/1.584416Google Scholar
30. Berger, P. R., Chang, K., Bhattacharya, P., Singh, J. and Bajaj, K., Appl. Phys. Lett. 53, 684 (1988).10.1063/1.99850Google Scholar
31. “Molecular Beam Epitaxial Growth and Characterization of Strained InGaAs/GaAs Heterostructures,” Chang, K., Ph.D. Thesis 1989, University of Michigan.Google Scholar