Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T23:06:42.261Z Has data issue: false hasContentIssue false

Connections between Crystallographic Data and New Thermoelectric Compounds

Published online by Cambridge University Press:  01 February 2011

B. C. Sales
Affiliation:
Solid State Division, Oak Ridge National Laboratory Oak Ridge, TN 37831–6056, U. S. A.
B. C. Chakoumakos
Affiliation:
Solid State Division, Oak Ridge National Laboratory Oak Ridge, TN 37831–6056, U. S. A.
D. Mandrus
Affiliation:
Solid State Division, Oak Ridge National Laboratory Oak Ridge, TN 37831–6056, U. S. A.
Get access

Abstract

New bulk thermoelectric compounds are normally discovered with the aid of simple qualitative structure-property relationships. Most good thermoelectric materials are narrow gap semiconductors composed of heavy elements with similar electronegativities. The crystal structures are usually of high symmetry (cubic, hexagonal, and possibly tetragonal), and often contain a large number of atoms per unit cell. In the present work a new structure-property relationship is discussed which links atomic displacement parameters (ADPs) and the lattice thermal conductivity of clathrate-like compounds. For many clathrate-like compounds, in which one of the atom-types is weakly bound and “rattles” within its atomic cage, room temperature ADP information can be used to estimate the room temperature lattice thermal conductivity, the vibration frequency of the “rattler”, and the temperature dependence of the heat capacity. ADPs are reported as part of the crystal structure description, and hence APDs represent some of the first information that is known about a new compound. For most ternary and quaternary compounds, all that is known is its crystal structure. ADP information thus provides a useful screening tool for the large and growing crystallographic databases. Examples of the use and limitations of this analysis are presented for several promising classes of thermoelectric materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuhs, W. F., Acta Cryst. A48, 80 (1992).Google Scholar
2. Dunitz, J.D., Schomaker, V., and Trueblood, K. N., J. Phys. Chem. 92, 856 (1988).Google Scholar
3 Kittel, C., Introduction to Solid State Physics, Third Edition (John Wiley and Sons, New York 1968), pp. 69–70, p. 186.Google Scholar
4. Willis, B. T. M. and Pryor, A. W., Thermal Vibrations in Crystallography (Cambridge University Press, London 1975).Google Scholar
5. Mahan, G. D., Sales, B. C., and Sharp, J. W., Physics Today, 50, No. 3, 42 (1997).Google Scholar
6. Slack, G. A. in CRC Handbook of Thermoelectrics, edited by Rowe, D. M. (Chemical Rubber, Boca Raton, FL, 1997) pp. 407440.Google Scholar
7. Goldsmid, H. J., Electronic Refrigeration (Pion Limited, London 1986).Google Scholar
8. Sales, B. C., MRS Bulletin 23, 15 (1998).Google Scholar
9. Sales, B. C., Chakoumakos, B. C. and Mandrus, D., Chapter 3 in Semiconductors and Semimetals: Thermoelectric Materials Research, edited by Tritt, Terry M. (Academic Press, San Diego, 2000).Google Scholar
10. Sales, B. C., Chakoumakos, B. C., Mandrus, D. and Sharp, J. W., J. Solid State Chem. 146, 528 (1999).Google Scholar
11. Braun, D. J. and Jeitschko, W., J. Less-Common Metals, 72, 147 (1988).Google Scholar
12. Goldsmid, H. J., Electronic Refrigeration (Pion Limited, London, 1986).Google Scholar
13. Nolas, G. S., Cohn, J. L., and Slack, G. A., Phys. Rev. B. 58, 164 (1998).Google Scholar
14. Meisner, G. P., Morelli, D. T., Hu, S., Yang, J. and Uher, C., Phys. Rev. Lett. 80, 3551 (1998).Google Scholar
15. Sales, B. C., Chakoumakos, B. C. and Mandrus, D. Phys. Rev. B. 61, 2475 (2000).Google Scholar
16. Pohl, R. O., Phys. Rev. Lett. 8, 481 (1962).Google Scholar
17. Zakrzewski, M. and White, M. A., Phys. Rev. B. 45, 2809 (1992).Google Scholar
18. Keppens, V., Mandrus, D., Sales, B. C., Chakoumakos, B. C., Dai, P., Coldea, R., Maple, M. B., Gajewski, D. A., Freeman, E. J. and Bennington, S., Nature 395, 876 (1998).Google Scholar
19. Sales, B. C., Mandrus, D., Chakoumakos, B. C., Keppens, V. and Thompson, J. R., Phys. Rev. B. 56, 15081 (1997).Google Scholar
20. Callaway, J., Phys. Rev. 113, 1046 (1959).Google Scholar
21. Klemens, P. G. in Solid State Physics 7, 1,(1958), edited by Seitz, F. and Turnbull, D. (Academic Press, New York).Google Scholar
22. Walker, C. T. and Pohl, R. O., Phys. Rev. 131, 1433 (1963).Google Scholar
23. Slack, G. A., in Solid State Physics 34, 1 (1979) edited by Ehrenreich, H., Seitz, F., and Turnbull, D. (Academic Press, New York).Google Scholar
24 Cahill, D. G., Watson, S. K., and Pohl, R. O., Phys. Rev. B. 46, 6131 (1992)Google Scholar
25. Cohn, J. L., Nolas, G. S., Fessatidis, V., Metcalf, T. H., and Slack, G. A., Phys. Rev. Lett. 82, 779 (1999).Google Scholar
26. Agafonov, V. B., Legendre, B., Rodier, N., Cense, J. M., Dichi, E., and Kra, G., Acta Cryst. C47, 850 (1991).Google Scholar
27. Eisenmann, B., Schafer, H., and Zagler, R., J. Less-Common Metals 118, 43 (1986).Google Scholar