Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T07:37:46.029Z Has data issue: false hasContentIssue false

Conduction and Microwave Loss Mechanisms in Ba0.25Sr0.75TiO3 Films

Published online by Cambridge University Press:  01 February 2011

Andrei Vorobiev
Affiliation:
Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden Institute for Physics of Microstructures RAS, N. Novgorod, GSP-105, 603600, Russia
Par Rundqvist
Affiliation:
Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
Khaled Khamchane
Affiliation:
Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
Spartak Gevorgian
Affiliation:
Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden Microwave and High Speed Electronics Research Center, Ericsson AB, 431 84 Moelndal, Sweden
Get access

Abstract

Silicon integrated parallel-plate Ba0.25Sr0.75TiO3 (BST) thin film varactors with Au bottom electrode have been prepared and characterized at dc and microwave frequencies. In the frequency range 0.045–45 GHz the varactors reveal extremely low loss tangent values (less than 0.025). However, this is still several times higher than loss in single crystal indicating occurrence of the extrinsic loss mechanisms. The analysis of BST film loss tangent and permittivity, depending on frequency and applied dc field, allow to attribute the dielectric loss to the charged defects. The dc current through varactor is found to be controlled by Poole-Frenkel mechanism associated with field enhanced thermal excitation of charge carriers from internal traps. It is assumed that charged defects and internal traps are the same type of BST film microstructure imperfection and possibly ascribed to be oxygen vacancies. The knowledge of the extrinsic loss mechanism and corresponding microstructure defects allows to optimize the deposition and/or anneal process and further improve the varactor performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tombak, Ali, Maria, Jon-Paul, Ayguavives, Francisco T., Jin, Zhang, Stauf, Gregory T., Kingon, Angus I., and Mortazawi, Amir, IEEE Trans. on Microwave Theory and Tech. 51, 462 (2003).Google Scholar
2. York, R. A., Nagra, A. S., Periaswamy, P., Auciello, O., Streiffer, S. K. and Im, J., Journal of Integr. Ferroel. 34, 177 (2000).Google Scholar
3. Acikel, B., Taylor, T. R., Hansen, P. J., Speck, J. S., and York, R. A., IEEE Microwave and Wireless Comp. Lett. 12, 237 (2002).Google Scholar
4. Vorobiev, A., Rundqvist, P., Khamchane, K., and Gevorgian, S., Appl. Phys. Lett. 83, 3144 (2003).Google Scholar
5. Vendik, O. G., Hollman, E. K., Kozirev, A. B., and Prudan, A. M., Journal of Superconductivity 12(2), 325 (1999).Google Scholar
6. Tagantsev, A. K., Sherman, V. O., Astafiev, K. F., Venkatesh, J. and Setter, N., Journal of Electroceramics (2003) (in press).Google Scholar
7. Vendik, O. G., Zubko, S. P., and Nikol'ski, M. A., J. Appl. Phys. 92, 7448 (2002).Google Scholar
8. Vendik, Orest G., Ter-Martirosyan, Leon T., Zubko, Svetlana P., J. Appl. Phys. 84, 993 (1998).Google Scholar
9. Li, P. and Lu, T.-M., Phys. Rev. B 43, 14 261 (1991).Google Scholar
10. Dietz, G. W., Antpohler, W., Klee, M., and Waser, R., J. Appl. Phys. 78, 6113 (1995).Google Scholar
11. Joshi, P. C., and Krupanidhi, S. B., J. Appl. Phys. 73, 7627 (1993).Google Scholar
12. Ma, Z., Becker, A. J., Polakos, P., Huggins, H., Pastalan, J., Wu, H., Wong, Y. H., and Mankiewich, P., IEEE Trans. on Electron Devices 45, 1811 (1998).Google Scholar
13. Jonscher, K., “The response of a “universal” capacitor” Dielectric Relaxation in Solids, (Chelsea Dielectrics Press Ltd, London, 1983). pp. 8789.Google Scholar
14. Sze, S. M., “Carrier Transport in Insulating Films,” Physics of Semiconductor Devices, ed. John Wiley & Sons (New York, 1981). pp. 402403.Google Scholar
15. Tsai, M. S., Tseng, T. Y., Materials Chemistry and Physics 57, 47 (1998).Google Scholar
16. Gerblinger, Josef and Meixner, Hans, J. Appl. Phys. 67, 7453 (1990).Google Scholar
17. Saha, S. and Krupanidhi, S. B., Appl. Phys. Lett. 79, 111 (2001).Google Scholar
18. Feil, W. A. and Wessels, B. W., J. Appl. Phys. 74, 3927 (1993).Google Scholar
19. McIntyre, Pal C., Kelman, Maxim, Schloss, Lawrence F. and Wang, Ruey-Ven, Proc. 204th Meeting of The Electrochemical Society (2003).Google Scholar
20. Dalberth, M. J., Stauber, R. E., Price, J. C., Rogers, C. T., and Galt, David, Appl. Phys. Lett. 72, 507 (1998).Google Scholar
21. Zhu, X., Zhu, J., Zhou, S., Liu, Z., Ming, N., Lu, S., Lai-Wan Chan, H., and Choy, C-L, J. of Electronics Materials 32, 1125 (2003).Google Scholar
22. Hiratani, M., Imagawa, K., and Takagi, K., J. Appl. Phys. 78, 4258 (1995).Google Scholar
23. Knauss, L. A., Pond, J. M., Horwitz, J. S., Chrisey, D. B., Mueller, C. H., and Treece, Randolph, Appl. Phys. Lett. 69, 25 (1996).Google Scholar
24. Ang, Chen, Guo, Ruyan, Bhalla, A. S., and Cross, L. E., J. Appl. Phys. 87, 3937 (2000).Google Scholar