Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T12:10:16.569Z Has data issue: false hasContentIssue false

Concentiration Dependence of the Translational Diffusion of Monoclonal Antibodies Specifically Bound to Phospholipid Langmmuir-Blodgett Films

Published online by Cambridge University Press:  26 February 2011

Lois L. Wright
Affiliation:
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
Arthur G. Palmer III
Affiliation:
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
Nancy L. Thompson
Affiliation:
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
Get access

Extract

The concentration dependence of protein diffusion in solution and in two-dimensional biological membranes is of current theoretical and experimental interest [1]. Langmuir-Blodgett films can be employed to measure protein diffusion coefficients in or on fluid phospholipid bilayers, as a function of protein concentration. Substrate-supported phospholipid monolayers and bilayers have been used extensively as models of immunological cell membranes, and are also of interest in fields other than membrane biophysics, including protein crystallography, medical technology, bioelectronics, optics, and surface science [2,3].

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. O'Leary, T.J., Biophys. J. 52, 137 (1987); G.D.J. Phillies, Macromolec. 19, 2367 (1986); K.W. Kehr, R. Kutner, K Binder, Phys. Rev. B 23, 4931 (1981); H.J. Galla, W. Harmann, U. Theilen, E. Sackmann, J. Membrane Biol. 48, 215 (1979).Google Scholar
2. Uzgiris, E.E., Biochem. Biophys. Res. Comm. 134, 819 (1986).Google Scholar
3. McConnell, H.M., Watts, T.H., Weis, R.M., Brian, A.A., Biochim. Biophys. Acta 864, 95 (1986); J.F. Place, R.M. Sutherland, C. Dahne, Biosensors 1, 321 (1985); Thin Solid Films 99.Google Scholar
4. Hafeman, D.G., von Tscharner, V., McConnell, H.M., Proc. Natl. Acad. Sci. U.S.A. 78, 4552 (1981); S. Subramaniam, M. Seul, H.M. McConnell, Proc. Natl. Acad. Sci. U.S.A. 83, 1169 (1986).Google Scholar
5. Balakrishnan, K., Hsu, F.J., Hafeman, D.G., McConnell, H.M., Biochim. Biophys. Acta 721, 30 (1982).Google Scholar
6. Anglister, J., Frey, T., McConnell, H.M., Biochemistry 23, 1138 (1984).Google Scholar
7. Mishell, B.B., Shiigi, S.M., Selected Methods in Cellular Immunolog (W.H. Freeman and Co., San Francisco, 1980), p. 292.Google Scholar
8. Tamm, L.K., McConnell, H.M., Biophys. J, 46, 105 (1985).Google Scholar
9. Palmer, A.G., Thompson, N.L., Biophys. J. 52, 257 (1987).Google Scholar
10. Smith, B.A., McConnell, H.M., Proc. Natl. Acad. Sci. U.S.A. 75, 2759 (1978).Google Scholar
11. Ratkowsky, D., Nonlinear Regression Modeling (Marcell Dekker Inc., New York, 1983), p. 143.Google Scholar
12. Thompson, N.L., in Fluorescence Spectroscopy 2, edited by Lakowicz, J.R. (Plenum Press, New York), submitted.Google Scholar
13. Melchior, D.L., Science 234, 1577 (1986); 238, 550 (1987).Google Scholar