Skip to main content Accessibility help
×
Home

The Computational Materials Design Facility (CMDF): A powerful framework for multi-paradigm multi-scale simulations

  • Markus J. Buehler (a1), Jef Dodson (a2), Adri C.T. van Duin (a3) and William A. Goddard III (a4)

Abstract

Predicting the properties and behavior of materials by computer simulation from a fundamental, ab initio perspective has long been a vision of computational material scientists. The key to achieving this goal is utilizing hierarchies of paradigms and scales that connect macrosystems to first principles quantum mechanics (QM). Here we describe a new software environment, the “Computational Materials Design Facility” (CMDF), capable of simulations of complex materials studies using a variety of simulation paradigms. The CMDF utilizes a Python scripting layer to integrate different computational tools to develop multi-scale simulation applications. We have integrated DFT QM methods, the first principles ReaxFF reactive force field, empirical all atom force fields (FFs), mesoscale and continuum methods. The central data structure Extended OpenBabel (XOB) plays a critical role as glue between applications. We demonstrate the usefulness of CMDF in examples that couple complex chemistry and mechanical properties during dynamical failure processes, as for example in a study of cracking of Ni under presence of O2.

Copyright

References

Hide All
[1] Springborg, M., Density-functional methods in chemistry and materials science, Wiley research series in Theoretical Chemistry, 1997.
[2] Duin, A. C. T. v., Dasgupta, S., Lorant, F., Goddard, W. A., J. Phys. Chem. A 105 (2001) 93969409.
[3] Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., Sinnott, S. B., Journal Of Physics-Condensed Matter 14 (2002) 783802.
[4] Stuart, S. J., Tutein, A. B., Harrison, J. A., Journal Of Chemical Physics 112 (2000) 64726486.
[5] Buehler, M. J., Duin, A. C. T. v., Goddard, W. A., Phys. Rev. Lett., in press.
[6] Liu, W. K., Karpov, E. G., Zhang, S., Park, H. S., Computer Methods in Applied Mechanics and Engineering 193 (2004) 15291578.
[7] Li, X. T., Weinan, E., Journal Of The Mechanics And Physics Of Solids 53 (2005) 16501685.
[8] Curtin, W. E., Miller, R. E., Model. Sim. Mat. Science and Engr. 11 (2003) R33–E68.
[9] Abraham, F. F., Walkup, R., Gao, H., Duchaineau, M., Rubia, T. D. d. L., Seager, M., P. Natl. Acad. Sci. USA 99 (2002) 57885792.
[10] Buehler, M. J., Gao, H., Nature 439 (2006) 307310.
[11] Norskov, J. K., Schiotz, J., Jacobsen, K. W..
[12] Zhou, S. J., Beazly, D. M., Lomdahl, P. S., Holian, B. L., Phys. Rev. Lett. 78 (1997) 479482.
[13] Hauch, J. A., Holland, D., Marder, M., Swinney, H. L., Future Generation Computer Systems 19 (2003) 599609.
[14] Parker, S. G., Johnson, C. R., Beazley, D., IEEE Computational Science and Engineering 4 (1997) 50599.
[15] Strachan, A., van Duin, A. C. T., Chakraborty, D., Dasgupta, S., Goddard, W. A., Physical Review Letters 91 (2003).
[16] van Duin, A. C. T., Nielson, K., Deng, W. Q., Oxgaard, J., Goddard, W. A., Abstracts Of Papers Of The American Chemical Society 227 (2004) U1031–U1031.

Keywords

The Computational Materials Design Facility (CMDF): A powerful framework for multi-paradigm multi-scale simulations

  • Markus J. Buehler (a1), Jef Dodson (a2), Adri C.T. van Duin (a3) and William A. Goddard III (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed