Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T06:00:37.244Z Has data issue: false hasContentIssue false

Composition Determination of Microcrystalline Two-Phase Silicon Rich Oxides

Published online by Cambridge University Press:  21 February 2011

D.H. Bouldin
Affiliation:
IBM, 1000 River Road, Essex Junction, Vermont 05452
C.H. Lam
Affiliation:
IBM, 1000 River Road, Essex Junction, Vermont 05452
K. Rose
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12181
Get access

Abstract

HRTEM measurements of silicon rich oxides (SRO) show silicon microcrystals in an oxide matrix [1]. Simple, reliable characterization of this two phase material has been a problem. Ellipsometric measurement of the refractive index is a convenient method for characterizing SRO films. Film composition can be related to the refractive index by Bruggeman's effective medium approximation. In this paper we demonstrate correlation of film compositions obtained by this technique with those obtained by Auger electron spectroscopy (AES)and Rutherford back scattering (RBS). We further demonstrate regimes of LPCVD growth where simple correlation of film composition with [N2 0]/[SiH4] gas ratios is not reliable.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chang, K.-T., Lam, C. and Rose, K., MRS Proc., 105, 193 (1988).Google Scholar
2. Matsushita, T. et al. , Jap. J. Appl. Phys. Supplement, 15, 35 (1976).Google Scholar
3. Fujioka, J. et al. , IEEE IEDM Digest, 8.6 (1987).Google Scholar
4. DiMaria, D.J. et al. , J. Appl. Phys., 54, 5801 (1983).Google Scholar
5. DiMaria, D.J., DeMeyer, K.M., and Dong, D.W., IEEE Elec. Dev. Lett. EDL–1, 179 (1980).Google Scholar
6. Wong, J. et al. , Appl. Phys. Lett., 48, 65 (1986).Google Scholar
7. Irene, E.A. et al. , J. Electrochem. Soc., 127, 2518 (1980).Google Scholar
8. Olego, D.J. and Baumgart, H., J. Appl. Phys., 63, 2669 (1988).Google Scholar
9. Chang, K-T., Ph.D. Thesis, RPI (1987).Google Scholar
10. Verstegen, B. et al. , J. Appl. Phys. 57, 2766 (1985).Google Scholar
11. Thomas, J.H. and Goodman, A.M., J. Electrochem. Soc. 126, 1766 (1979).Google Scholar
12. Lam, C.H. and Rose, K., MRS Proc., 131, 281 (1989).Google Scholar
13. Dong, D.D. et al. , J. Electrochem. Soc., 125, 819 (1978).Google Scholar
14. Aspnes, D.E. et al. , Phys. Rev. B, 20, 3292 (1979).Google Scholar
15. Collins, R.W. et al. in Tetrahedrally-Bonded Amorphous Semiconductors, Adler, D. and Fritzche, H. Eds. (Plenum, New York, 1985) p. 63.Google Scholar
16. Philipp, H.R. and Taft, E.A., Phys. Rev. 120, 37 (1960).Google Scholar
17. Sze, S.M., Physics of Semiconductor Devices, (Wiley, New York, 1981, 2nd Ed.) p. 852.Google Scholar
18. Hitchman, M.L. and Kane, J., J. of Crystal Growth, 55, 485 (1981).Google Scholar