Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-11T03:35:40.326Z Has data issue: false hasContentIssue false

Composition Dependence of Hardness and Moduli in GeSi/Si-Heterostructures Measured by Nanoindentation

Published online by Cambridge University Press:  21 February 2011

B. S. Roos
Affiliation:
Institut für Halbleiterphysik, Walter-Korsing-Str. 2, D–15230 Frankfurt (Oder), Germany
H. Richter
Affiliation:
Institut für Halbleiterphysik, Walter-Korsing-Str. 2, D–15230 Frankfurt (Oder), Germany
T. Morgenstern
Affiliation:
Institut für Halbleiterphysik, Walter-Korsing-Str. 2, D–15230 Frankfurt (Oder), Germany
B. Tillack
Affiliation:
Institut für Halbleiterphysik, Walter-Korsing-Str. 2, D–15230 Frankfurt (Oder), Germany
Get access

Abstract

GexSi1-x layers (0 ≤ × ≤ 1), with thicknesses ranging from 0.1 to 1.2 µm, were grown on Si(100) and Si(lll) by chemical vapor deposition (APCVD, LP/RTCVD) and liquid phase epitaxy (LPE), respectively. A NanoTest 500 machine served for nanoindentation measurements to evaluate the hardness and elastic moduli. The GeSi layers show strong alloy hardening with an increase varying proportional to x(l-x) as reported for III-V and H-VI-semiconductors. Maximum hardness is close to x = 0.45 at one and a half of the silicon hardness. For binary alloys such as Ge-Si, which show complete solid solubility, the elastic moduli are generally assumed to vary linearly with composition. In contrast to that we found for the indentation modulus E/(l-v2) a positive deviation of 30 % from linear interpolation (Vegard’s law), proportional to x(l-x). The increase in the elastic constants is explained by the structural properties of the Ge-Si alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fischer, A., Kühne, H., Roos, B., and Richter, H., Semicond. Sci. Technol. 9(12) (1994)Google Scholar
2. Wang, C.C. and Alexander, B.H., Acta metal. 15,516 (1955)Google Scholar
3. Glazov, V.M. and Vigdorovich, V.N., The Microhardness of Metals (Metallurgizdat, Moscow, 1962)Google Scholar
4. Kekua, M.G. and Khutsishvili, E.V., Inorg. Mater. 3, 1030 (1967)Google Scholar
5. Kekua, M.G., Velijulin, E.I., Gamkrelidze, N.U., and Berdzenishvili, K.S., phys. stat. sol.(a) 143, K79 (1994)Google Scholar
6. Krüger, D., Morgenstern, Th., Kurps, R., Bugiel, E., Quick, Ch., and Kühne, H., J. Appl. Phys. 75, 7829(1994)Google Scholar
7. Tillack, B., Ritter, G., Krüger, D., Zaumseil, P., Morgenstern, G., and Glowatzki, K.-D., to be published in Materials Science and TechnologyGoogle Scholar
8. Roos, B. and Ernst, F., J. Cryst. Growth 137,457 (1994)Google Scholar
9. Doerner, M.F. and Nix, W.D., J. Mater. Res. 1,601 (1986)Google Scholar
10. Loubet, J.C., Georges, J.M., Marchesini, O., and Meille, G., J. of Tribology 106,43 (1984)Google Scholar
11. Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7,1564 (1992)Google Scholar
12. Kataoka, T. and Yamada, T., Jap. J. Appl. Phys. 16,1119 (1977)Google Scholar
13. Goryonova, N.A., Borshchevkii, A.S., and Tretiakov, D.N., in Semiconductors and Semi-metals, edited by Willardson, R.K. and Beer, A.C. (Academic, New York, 1968), Vol. 4, p. 3 Google Scholar
14. Myles, C.W. and Ekpenuma, S.N., J. Vac. Sci. Technol. B 10,1454 (1992)Google Scholar
15. Pharr, G.M., Oliver, W.C., and Clarke, D.R., J. Electron. Mat. 19, 881 (1990)Google Scholar
16. Pharr, G.M. and Oliver, W.C., MRS Bulletin, July (1992) 28 Google Scholar
17. Huntington, H.B., The Elastic Constants of Crystals (Acad. Press, New York, 1958), p. 130 Google Scholar
18. Bublik, V.T., Gorelik, S.S., Zaitsev, A.A., and Poyakov, A.Y., phys.stat.sol. (b) 66, 427 (1974)Google Scholar
19. Kajiyama, H., Muramatsu, S.-I., Shimada, T., and Nishino, Y., Phys. Rev. B 45, 14005 (1992)Google Scholar