Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-12T18:13:20.540Z Has data issue: false hasContentIssue false

Composition Analysis of RF Plasma-Deposited Amorphous Silicon Oxynitride Thin Films by Spectroscopic Phase-Modulated Ellipsometry

Published online by Cambridge University Press:  22 February 2011

J. Campmany
Affiliation:
Departament de Física Aplicada i Electrónica, Universitat de Barcelona, Av. Diagonal, 647, E08028 Barcelona. Catalonia (Spain).
J. L. Andujar
Affiliation:
Departament de Física Aplicada i Electrónica, Universitat de Barcelona, Av. Diagonal, 647, E08028 Barcelona. Catalonia (Spain).
A. Canillas
Affiliation:
Departament de Física Aplicada i Electrónica, Universitat de Barcelona, Av. Diagonal, 647, E08028 Barcelona. Catalonia (Spain).
J. Costa
Affiliation:
Departament de Física Aplicada i Electrónica, Universitat de Barcelona, Av. Diagonal, 647, E08028 Barcelona. Catalonia (Spain).
E. Bertran
Affiliation:
Departament de Física Aplicada i Electrónica, Universitat de Barcelona, Av. Diagonal, 647, E08028 Barcelona. Catalonia (Spain).
Get access

Abstract

Thin films of highly transparent amorphous silicon oxynitride (a-SiOx Ny:H) were prepared by rf glow discharge decomposition of SiH4,NH3 and N2O gases, in a PECVD reactor provided with an in situ phase-modulated ellipsometer. The ratio [N2O]/ ([N2O] + [NH3]) was varied from 0 to 1 in a dilution with 5% of SiH4, keeping constant the total gas flow rate. From spectroscopic ellipsometric measurements, performed in the range 1.5–5.0 eV, the refractive index of the films was calculated applying the Bruggeman effective medium theory. The structural model used considers a three-component mixture layer, composed of void, silicon dioxide (glass) and silicon nitride (pyrolitic), on a c-Si substrate. The x and y composition parameters were calculated from the fitted relative volume fraction of each constituent, ranging from a-SiO2 N0:H to a-SiO0N1.33:H, which are in fair agreement with those obtained from XPS measurements. These results, along with data of FTIR spectra of the films show a clear correlation between the void fraction and the bonded hydrogen content of the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bruggeman, D.A.G., Ann. Phys. (Leipzig) 24 (1935) 636.Google Scholar
[2] Andújar, J.L., Bertran, E., Canillas, A., Esteve, J., Andreu, J. and Morenza, J.L., Vacuum 39 (1989) 795.Google Scholar
[3] Canillas, A., Bertran, E., Andújar, J.L. and Morenza, J.L., Vacuum, 39 (1989) 785.Google Scholar
[4] Azzam, R.M.A. and Bashara, N.M. Ellipsometry and polarized light, (Noth Holland, Amsterdam, 1989).Google Scholar
[5] Palik, E.D., Handbook of optical constants of solids, (Academic Press, Orlando, 1985).Google Scholar
[6] Press, W.H., Flannery, B.P., Teukolsky, S.A., Vettering, W.T., Numerical Recipes (Cambridge University Press, New York, 1988).Google Scholar
[7] Rostaing, J.C., Cros, Y., Gujrathi, S.C. and Poulain, S., J. Non-Cryst. Sol. 97&98 (1987) 1051.Google Scholar
[8] Smith, D.L., Alimonda, A.S., Chen, C.C., Ready, S.E. and Wacker, B., J. Electrochem. Soc. 137 (1990) 614.Google Scholar