Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T23:21:16.271Z Has data issue: false hasContentIssue false

Complexation of Transuranic Ions by Humic Substances: Application of Laboratory Results to the Natural System

Published online by Cambridge University Press:  03 September 2012

Ken Czerwinski
Affiliation:
Nuclear Engineering Department, Massachusetts Institute of Technology, Bldg. 24–210, 77 Massachusetts Ave., Cambridge, MA 02139–4308, USA
Jae-Il Kim
Affiliation:
Nuclear Engineering Department, Massachusetts Institute of Technology, Bldg. 24–210, 77 Massachusetts Ave., Cambridge, MA 02139–4308, USA Forschungszentrum Karlsruhe, Institut fuer Entsorgungstechnik, 76021 Karlsruhe, Germany
Get access

Abstract

Environmental investigations show transuranic ions sorb to humic substances. The resulting species are often mobile and are expected to be important vectors in the migration of transuranic ions in natural systems. However, theses environmental studies yield no quantitative data useful for modeling. Laboratory complexation experiments with transuranic ions and humic substances generate mermodynamic data required for complexation modeling. The data presented in this work are based on the metal ion charge neutralization model, which is briefly described. When a consistent complexation model is used, similar results are obtained from different experimental conditions, techniques, and laboratories. Trivalent transuranic ions (CM(III), AM(III)) have been extensively studied with respect to pH, ionic strength, origin of humic acid, and mixed species formation. The complexation of Np(V) has been examined over a large pH and metal ion concentration range with different humic acids. Some data does exist on the complexation of plutonium with humic acid, however further work is needed. Calculations on the Gorleben aquifer system using the thermodynamic data are presented. Critical information lacking from the mermodynamic database is identified.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carlsen, L.: The Role of Organics in the Migration of Radionuclides in the Geosphere. CEC Report EUR 12024 (1989).Google Scholar
2. Nash, K.L. and Choppin, , G.R. Inorg. Nucl. Chem. 42, 1045 (1980).Google Scholar
3. Ibarra, V., Osacar, T., and Gavilan, M. An. Quim. 77, 224 (1981).Google Scholar
4. Li, W.C., Victor, D.M., and Chakrabarti, C.L.: Anal. Chem. 52, 520 (1980)Google Scholar
5. Kim, J.I., and Buckau, G.: Huminstoffuntersuchungen an Gorleben Grundwässern, RCM 01590, TU München (1990).Google Scholar
6. Schnitzer, M.: Recent Findings on the Characterization of Humic Substances Extracted from Soils from Widely Differing Climatic Zones, in: Proc. Symposium on Soil Organic Matter Studies, International Atomic Energy Agency, Vienna, 117 (1977).Google Scholar
7. Kim, J.I., Buckau, G., Klenze, R., Rhee, D.S., and Wimmer, H.: Characterization and Complexation of Humic Acid. RCM 01090, TU München (1990).Google Scholar
8. Stadler, S. and Kim, J.I. Radiochim. Acta 44/45, 39 (1988).Google Scholar
9. Meinrath, G., and Kim, J.I. Radiochim. Acta 52/53, 29 (1991).Google Scholar
10. Kim, J.I., Buckau, G., and Klenze, R.: Natural Colloids and Generation of Actinide Pseudocolloids in Groundwater, in: Natural Analogues in Radioactive Waste Disposal. (Come, B. and Chapman, N. eds.), Graham + Trottman, London (1987).Google Scholar
11. Kim, J.I., Buckau, G., Baumgärtner, F., Moon, Ch., and Lux, D. Mat. Res. Soc. Symp. Proc. 26, 31 (1984).Google Scholar
12. Cooper, E.L., Hass, M.K., and Mattie, J.F. Appl. Radiat. Isot. 46, 1159 (1995).Google Scholar
13. Bunzl, K., Flessa, H., Kracke, W., and Schimmack, W. Environ. Sci. Technol. 29, 2513 (1995).Google Scholar
14. Agapkina, G.I., Tikhomirov, F.A., Shcheglov, A.I., Kracke, W., and Bunzl, K. J. Environ. Radioactivity 29, 257 (1995).Google Scholar
15. Graham, M.C., MacKenzie, A.B., McDonald, P., and Cook, G.T.: Actinide Interaction with Humic Substances. 5th International Conference on the Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere. St. Malo, France 1995.Google Scholar
16. Marley, N.A., Gaffney, J.S., Orlandini, K.A., and Cunningham, M.M. Sci. Technol. 27, 2456 (1993).Google Scholar
17. Goryachenkova, T.A., Pavlotskayas, F.I., and Myasoedov, B.F. J. Radioanal. Nucl. Chem. Art 147, 153 (1991).Google Scholar
18. Pavlotskayas, F.I., Goryachenkova, T.A., and Myasoedov, B.F. J. Radioanal. Nucl. Chem. Art. 147, 133 (1991).Google Scholar
19. Livens, F.R., Baxter, M.S., and Allen, S.E. Soil Sci. 144, 24 (1987).Google Scholar
20. Shen, G.T., Sholkovitz, E.R., and Mann, D.R. Earth Plan. Sci. Lett. 64, 437 (1983)Google Scholar
21. McCarthy, J.F., Sanford, W.E., and Czerwinski, K.R.: Natural Organic Matter Transports Transuranic Radionuclides in Shallow Groundwater. International Humic Substances Society Meeting, Poland 1996 Google Scholar
22. McCarthy, J.F., Marsh, J.D., and Tipping, E.: Mobilization of Actinides from Disposal Trenches by Natural Organic Matter. 5th International Conference on the Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere. St Malo, France 1995.Google Scholar
23. Kim, J.I. and Czerwinski, K.R. Radiochim. Acta 73, 5 (1996).Google Scholar
24. Kim, J.I., Rhee, D.S., and Buckau, G. Radiochim. Acta 52/53, 49 (1991).Google Scholar
25. Moulin, V., Robouch, P., Vitorge, P., Allard, B. Inorg. Chim. Acta 140, 303 (1987).Google Scholar
26. Buckau, G., Kim, J.I., Klenze, R., Rhee, D.S., and Wimmer, H. Radiochim. Acta 57, 105 (1992).Google Scholar
27. Kim, J.I., Buckau, G., Bryant, E., and Klenze, R. Radiochim. Acta 48, 145 (1989).Google Scholar
28. Kim, J.I., Rhee, D.S., Wimmer, H., Buckau, G., and Klenze, R. Radiochim. Acta. 62, 35 (1993).Google Scholar
29. Wimmer, H., Klenze, R. and Kim, J.I. Radiochim. Acta 56, 79 (1992).Google Scholar
30. Choppin, G.R. Radiochim. Acta 32, 43 (1983).Google Scholar
31. Edelstein, N., Bucher, J., Silva, R., Nitsche, H.: Thermodynamic Properties of Chemical Species in Nuclear Waste, Report LBL-14325, Lawrence Berkeley Laboratory, 1983.Google Scholar
32. Czerwinski, K.R., Kim, J.I., Rhee, D.S., and Buckau, G. Radiochim. Acta, 7 2, 179 (1996).Google Scholar
33. Grenthe, I., Lagerman, B. Acta Chem. Scand. 45, 122 (1991).Google Scholar
34. Neck, V., Kim, J.I., and Kanellakopulos, B. Radiochim. Acta 56, 25 (1992).Google Scholar
35. Kim, J.I., and Sekine, T. Radiochim. Acta. 55, 187 (1991).Google Scholar
36. Kim, J.I., Wimmer, H., and Klenze, R. Radiochim. Acta 54, 35 (1991).Google Scholar
37. Czerwinski, K.R., Buckau, G., Scherbaum, F., and Kim, J.I. Radiochim. Acta. 65, 111 (1994).Google Scholar
38. Torres, R.A., and Choppin, G.R. Radiochim. Acta 35, 143 (1984).Google Scholar
39. Bertha, E., and Choppin, G.R. J. Inorg. Nucl. Chem. 40, 655 (1978).Google Scholar
40. Yamamoto, M., and Sakanoue, M. J. Radiat. Res. 23, 261 (1982).Google Scholar
41. Moulin, V., Robouch, P., and Vitorge, P. Inorg. Chim. Acta 140, 303 (1987).Google Scholar
42. Moulin, V., Tits, J., Moulin, C., Decambox, P., Mauchien, P. and de Ruty, O. Radiochim. Acta 58/59, 121 (1992).Google Scholar
43. Panak, P.: Untersuchung von Intramolekular Energietransferprozessen in Cm(III) und Tb(III)-Komplexen mit Organischen Liganden mit Hilfe der Zeit-Aufgelösten Laserfluoreszenzspektroskopie, Dissertation, Institut für Radiochemie, TU München 1996.Google Scholar
44. Panak, P., Klenze, R., and Kim, J.I. Radiochim. Acta 74, 141 (1996).Google Scholar
45. Rao, L. and Choppin, G.R. Radiochim. Acta 69, 87 (1995).Google Scholar
46. Marquardt, C., Herrmann, G., and Trautmann, N. Radiochim. Acta. 73, 119 (1996).Google Scholar
47. Choppin, G.R. J. Radioanal. Nucl. Chem. 147, 109 (1991).Google Scholar
48. Mahajan, G.R., Rao, V.K., and Natarajan, P.R. J. Radioanal. Nucl. Chem. 137, 219 (1989).Google Scholar
49. Shchebetkovskii, N. and Bochkov, A.A.: Interaction of Plutonium with Natural Humic Substances. Radiokhim. 17, 952 (1975).Google Scholar
50. Allard, B., Kipatsi, H., and Liljenzin, J.O. J. Inorg. Nucl. Chem. 42, 1015 (1980).Google Scholar
51. Kim, J.I., Klenze, R., Neck., V., Sekine, T., and Kanellakopulos, B.: Hydrolyse, Carbonai- und Humat-Kompíexierung von Np(V). Institut fuer Radiochemie der TU Muenchen, RCM 01091 (1991).Google Scholar
52. Wimmer, H., Klenze, R. and Kim, J.I. Radiochim. Acta 56, 79 (1992).Google Scholar
53. Zeh, P., Kim, J.I., and Buckau, G.: Aquatic Colloids Composed of Humic Substances, in Binding Models Concerning Natural Organics in Performance Assessment, Proceedings, OECD NEA, pg. 81 (1995).Google Scholar
54. Nitsche, H. and Silva, R. Radiochim. Acta 72, 65 (1996).Google Scholar
55. Baes, C.F. and Mesmer, R.E.: The Hydrolysis of Cations Wiley-Interscience, New York 1976, p. 188.Google Scholar