Skip to main content Accessibility help
×
Home

Competition Between Gettering by Implantation-Induced Cavities in Silicon and Internal Gettering Associated with SiO2 Precipitation

  • S. A. McHugo (a1), E. R. Weber (a1), S. M. Myers (a2) and G. A. Petersen (a2)

Abstract

The gettering behavior of Cu and Fe was investigated in CZ silicon containing both internal-gettering sites in the bulk due to SiO2 precipitation and a device-side layer of cavities formed by He ion implantation and annealing. The objective was to quantify the effectiveness of impurity gettering at cavities relative to the widely used internal-gettering process. Both rapid thermal anneals and furnace anneals were used during the gettering sequences to reveal transient effects as well as the final, thermodynamically-equilibrated condition. For temperatures of 700, 800 and 850°C, the cavity gettering was observed to dominate the internal gettering as indicated both by the number of gettered atoms in the cavities and the residual solution concentration in the device region. The results are interpreted in detail by numerically solving the diffusion equation with sink-related source terms based on earlier, fundamental studies of the underlying mechanisms of internal and cavity gettering.

Copyright

References

Hide All
1. The National Technology Roadmap for Semiconductors (Semiconductor Industry Assoc., San Jose, CA, 1994), p. 110
2. Materials Research Society Bulletin (Materials Research Society, Pittsburgh, PA, August 1994)
3. Tice, W.K. and Tan, T.Y., Mater. Res. Soc. Symp. Proc. 2, 367 (1981)
4. Gilles, D., Weber, E.R. and Hahn, S.K., Phys. Rev. Lett. 64, 196 (1990)
5. Aoki, M., Itakura, A. and Sasaki, N., Appl. Phys. Lett. 68, 51 (1995)
6. Wong, H., Cheung, N.W. and Chu, P.K., Appl. Phys. Lett. 52, 889 (1988)
7. Skorupa, W., Kogler, R., Schmalz, K., Gaworzewski, P., Morgenstren, G. and Syhre, H., Nuc. Instr. and Meth. in Phys. Res. B 74, 70 (1993)
8. Overwijk, M.H.F., Politiek, J., Kruif, R.C.M.d. and Zalm, P.C., Nuc. Instr. and Meth. in Phys. Res. B 96, 257 (1995)
9. Barbero, C.J., Corbett, J.W., Deng, C. and Atzmon, Z., J. Appl. Phys. 78, 3012 (1995)
10. Stolk, P.A., Benton, J.L., Eaglesham, D.J., Jacobson, D.C., Cheng, J.-Y., Poate, J.M., Myers, S.M. and Haynes, T.E., Appl. Phys. Lett. 68, 51 (1995)
11. Myers, S.M., Follstaedt, D.M., Bishop, D.M. and Medernach, J.W., in: Semiconductor Silicon, 7th International Symposium on Silicon Materials Science & Tech., edited by Huff, H.R., Bergholz, W. and Sumino, K., (The Electrochemical Society, Pennington, NJ, 1994, p. 808819
12. Wong-Leung, J., Nygren, E. and Williams, J.S., Appl. Phys. Lett. 67, 416 (1995)
13. Raineri, V., Battaglia, A. and Rimini, E., Nuc. Instr. and Meth. in Phys. Res. B 96, 249 (1995)
14. Myers, S.M., Petersen, G.A. and Seager, C.H., J. Appl. Phys. 80, 3717 (1996)
15. Myers, S.M. and Follstaedt, D. M., J. Appl. Phys. 79, 1337 (1996)
16. McHugo, S.A., Mizuno, M., Kirscht, F.G. and Weber, E.R., Appl. Phys. Lett. 66, 2840 (1995)
17. Ziegler, J.F., Biersack, J.P. and Littmark, U., in: “The Stopping and Range of Ions in Solids”, (Pergamon, New York, 1985)
18. Griffioen, C.C., Evans, J.H., Jong, P.C. de and Van Veen, A., Nucl. Instrum. Methods B 27, 417 (1987)
19. Follstaedt, D.M., Myers, S.M., Petersen, G.A. and Medernach, J.W., J. Elec. Matls. 25, 151 (1996)
20. Weber, E.R., Appl. Phys. A 30, 1 (1983)
21. McHugo, S.A., Weber, E.R., Myers, S.M. and Petersen, G.A., submitted to J. Appl. Phys., 1996
22. Miller, D.C. and Rozgonyi, G.A., in: “Handbook on Semiconductors”, ed. Keller, S.P. (North-Holland Publishing Company, 1980) p. 217246.
23. McHugo, S.A., Weber, E.R., Myers, S.M. and Petersen, G.A., Appl. Phys. Lett. 69, 3060 (1996)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed