Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-28T12:36:48.714Z Has data issue: false hasContentIssue false

Comparison of Vapor Phase and Liquid Phase Epitaxy for Deposition of Crystalline Si on Glass

Published online by Cambridge University Press:  10 February 2011

J. Kühnle
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuggart, Germany
R. B. Bergmann
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuggart, Germany
J. Krinke
Affiliation:
Universität Erlangen-N¨berg, Institut für Werkstoffwissenschaften - Mikrocharaketerisierung, Cauerstr. 6, D-91058 Erlangen, Germany
J. H. Werner
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuggart, Germany
Get access

Abstract

We compare the suitability of vapor phase and liquid phase epitaxy in a two step deposition process for the formation of thin crystalline Si films on glass substrates. In a first deposition step, we form polycrystalline Si seeding layers on glass. In a second step, we increase the thickness either by vapor phase or liquid phase epitaxy. Liquid phase epitaxy leads to growth of faceted grains of more than 100 μm in diameter but the films are not continuous. In contrast, chemical vapor deposition results in continuous, smooth films with grain sizes up to 7 μm. This difference of morphology originates from the influence of supersaturation and growth rate anisotropy. Chemical vapor deposited films exhibit surface morphologies and electrical properties that are promising for the preparation of crystalline thin film Si solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Werner, J. H., Bergmann, R., and Brendel, R., in Festköperprobleme / Advances in Solid State Physics, edited by Helbig, R. (Vieweg, Braunschweig / Wiesbaden, 1994) Vol.34, p. 115.Google Scholar
2. Zhao, J., Wang, A., Wenham, S. R., and Green, M. A., in Proceedings of the 13th European Photovoltaic Solar Energy Conference edited by Freiesleben, W., Palz, W., Ossenbrink, H. A., and Helm, P. (H. S. Stephens & AssociatesBedford, 1995) p. 1566.Google Scholar
3. Blakers, A. W., Weber, K. J., Stuckings, M. F., Armand, S., Matlakowski, G., Carr, A. J., Stocks, M. J., Cuevas, A., and Brammer, T., Progr. Photovolt. 3, 193, (1995).Google Scholar
4. Campe, H. V., Nikl, D., Schmidt, W., and Schoman, F., in Proceedings of the 13th European Photovoltaic Solar Energy Conference edited by Freiesleben, W., Palz, W., Ossenbrink, H. A., and Helm, P. (H. S. Stephens & Associates, Bedford, 1995) p. 1489.Google Scholar
5. Deguchi, M., Kawama, Y., Matsuno, Y., Nishimoto, Y., Morikawa, H., Arimoto, S., Kumabe, H., and Murotani, T., in Proceedings of the 1st World Conference on Photovoltaic Energy Conversion (IEEE, Piscataway, 1994) p. 1287.Google Scholar
6. Nakajima, A., Suzuki, T., Yoshimi, M., and Yamamoto, K., in Proceedings of the 13th European Photovoltaic Solar Energy Conference edited by Freiesleben, W., Palz, W., Ossenbrink, H. A., and Helm, P. (H. S. Stephens & Associates, Bedford , 1995) p. 1550.Google Scholar
7. Shi, Z., Young, T. L., and Green, M. A., in Proceedings of the 1st World Conference on Photovoltaic Energy Conversion (IEEE, Piscataway, 1994) p. 1579.Google Scholar
8. Bergmann, R., Kühnle, J., Werner, J. H., Oelting, S., Albrecht, M., Strunk, H. P., Herz, K., and Powalla, M., in Proceedings of the 1st World Conference on Photovoltaic Energy Conversion (IEEE, Piscataway, 1994) p. 1398.Google Scholar
9. Silier, I., Gutjahr, A., Banhart, F., Konuma, M., Bauser, E., Schöllkopf, V., and Frey, H., submitted to Materials Letters.Google Scholar
10. Brendel, R., Hirsch, M., Stemmer, M., Rau, U., and Werner, J. H., Appl. Phys. Lett. 66, 1261 (1995).Google Scholar
11. Oelting, S.. Martini, D., Köppen, H., and Bonnet, D., in Proceedings of the 13th European Photovoltaic Solar Energy Conference edited by Freiesleben, W., Palz, W., Ossenbrink, H. A., and Helm, P. (H. S. Stephens & Associates, Bedford, 1995) p. 1681.Google Scholar
12. Brendel, R., in Proceedings of the 13th European Photovoltaic Solar Energy Conference edited by Freiesleben, W., Palz, W., Ossenbrink, H. A., and Helm, P. (H. S. Stephens & Associates, Bedford, 1995) p. 436.Google Scholar
13. Bergmann, R., Oswald, G., Albrecht, M., and Werner, J. H., in: Solid State Phenomena, edited by Pizzini, S., Strunk, H. P., and Werner, J. H. (Trans. Tech. Publ., Zug , Switzerland, 1995) in press.Google Scholar
14. Kern, W., J. Electrochem. Soc. 137, 1887 (1990).Google Scholar
15. Chakraverty, B. K., in Crystal Growth: An Introduction, edited by Hartman, P. (North-Holland Publishing Company, Amsterdam, 1973) pp. 50104.Google Scholar
16. Givargizov, E. I., Oriented Crystallization on Amorphous Substrates (Plenum Press, New York, 1991) pp. 161.Google Scholar
17. Kühnle, J., Bergmann, R., and Werner, J. H., submitted to Journal of Crystal Growth.Google Scholar
18. Eaglesham, D. J., White, A. E., Feldman, L. C., Moriya, N., and Jacobson, D. C., Phys. Rev. Lett. 70, 1643 (1993).Google Scholar
19. Hansson, P. O., Albrecht, M., Dorsch, W., Strunk, H. P., and Bauser, E., Phys. Rev. Lett. 73, 444 (1994).Google Scholar
20. Mezey, L. Z. and Giber, J., Jpn. J. Appl. Phys. 21, 1569 (1982).Google Scholar
21. Bennema, P. and Gilmer, G. H., in Crystal Growth: An Introduction, edited by Hartman, P. (North-Holland Publishing Company, Amsterdam, 1973) p. 272.Google Scholar