Skip to main content Accessibility help
×
Home

Comparison of Trapping States at SiO2/Si Interfaces on si(100), (110), and (111) Prepared by Plasma-Assisted Oxidation and Oxide Deposition, and by Exposure to Atomic H Prior to Oxidation and Deposition

  • T. Yasuda (a1), Y. Ma (a1), S. Habermehl (a1) and G. Lucovsky (a1)

Abstract

S1O2 layers, ∼ 15 nm thick, were formed on Si (100), (110), and (111) surfaces by a low-temperature, 200–300°C, plasma-assisted oxidation/deposition process sequence. The distribution of the trap density at the S1O2/Si interface, and in the Si band-gap, Dit, was deduced from capacitance-voltage, C-V, measurements. The values of Dit at midgap varied with crystal orientation in a similar way as in thermally grown oxides. In addition, the low-temperature oxides displayed a characteristic and intrinsic dangling bond state, the so-called Pb center, at ∼0.3 eV above the Si valence-band edge. Samples exposed to atomic H prior to the oxidation and deposition steps, showed an increase in Dit due to a roughening of the Si surfaces, which produced additional broad bands of defect states, at ∼0.5 and ∼0.7 eV above the Si valence-band edge.

Copyright

References

Hide All
[1] Nicollian, E. H. and Brews, J. R., MOS (Metal Oxide Semiconductor) Physics and Technology (John Wiley & Sons, New York, 1982).
[2] Deal, B. E., J. Electrochem. Soc. 121, 198. (1974).
[3] Yasuda, T., Ma, Y., Habermehl, S., and Lucovsky, G., Appl. Phys. Lett., 60, 434 (1992);, MRS Symp. Proc. 238 (1992) to be published.
[4] Yasuda, T., Ma, Y., Habermehl, S., Kim, S. S., Lucovsky, G., Schneider, T. P., Cho, J., and Nemanich, R. J., MRS Symp. Proc. 202, 395 (1991).
[5] Lucovsky, G., Tsu, D. V., Rudder, R. A., and Markunas, R. J., Thin Film Processes II, edited by Vossen, J. L. and Kern, W. (Academic Press, San Diego, 1991), p. 565.
[6] Schneider, T. P., Cho, J., Vander Weide, J., Wells, S. E., Lucovsky, G., Nemsnich, R. J., Mantini, M. J., Rudder, R. A., and Markunas, R. J., MRS Symp. Proc. 204, 333. (1991).
[7] He, S. S., Stephens, D. J., Ma, Y., Yasuda, T., Habermehl, S., and Lucovsky, G., MRS Symp. Proc. 262 (1992) to be published.
[8] Poindexter, E. H., Gerardi, G. J., Rueckel, M. -E., Caplan, P. J., Johnson, N. M., and Biegelsen, D. K., J. Appl. Phys. 56, 2844. (1984);
Gerardi, G. J., Poindexter, E. H., Caplan, P. J., and Johnson, N. M., Appl. Phys. Lett., 49, 348. (1986).
[9] Johnson, N. M., Biegelsen, D. K., Moyer, M. D., Cheng, S. T., Poindexter, E. H., Caplan, P. J., Appl. Phys. Lett., 43, 563. (1983).
[10] Ma, Y., Yasuda, T., Bjorkman, C. H. and Lucovsky, G., J. Vac. Sci. Technol, A10 (1992) to be published.
[11] Lucovsky, G. and Lin, S. Y., AIP Conf. Proc. 120, 55 (1984).
[12] Higashi, G. S., Chabal, Y. J., Trucks, G. W., and Raghavachari, K., Appl. Phys. Lett., 56, 656. (1990).
[13] Ma, Y., Yasuda, T., Habermehl, S., He, S. S., Stephens, D. J., and Lucovsky, G., MRS Symp. Proc. 259 (1992) to be published.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed