Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T11:03:44.694Z Has data issue: false hasContentIssue false

A Comparison of The Roughness of Various Si/SiO2 Interfaces Using Synchrotron X-Ray Diffraction

Published online by Cambridge University Press:  21 February 2011

Mau-Tsu Tang
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
K.K. Evans-Lutrerodt
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
G.G. Higashi
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
T. Boone
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
Get access

Abstract

We use synchrotron X-ray diffraction to non-destructively characterize the roughness of various Si(001) interfaces. On the same sample, we compare the roughness of a buried Si(001)/SiO2 interface with the clean, reconstructed Si(001)/vacuum interface formed by desorption of the oxide. We also compare three different types of oxide; a native oxide, a dry thermal oxide, and a chemically grown RCA-clean type of oxide. We show that the dry thermal oxide interface is 0.5±0.1 times as rough as the native oxide interface, suggesting that the oxide growth decreases the roughness slightly.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ishizaka, A., Nakagawa, K., and Shiraki, Y., Second Int. Symp. on MBE and Clean Surface Related Techniques, ed. by Ueda, R., Jap. Soc. of Appl. Phys., Tokyo, 183, (1982).Google Scholar
2. Kern, W.,J. Electrochem. Soc. 137, 1887(1990).Google Scholar
3. Hahn, P.O. and Henzler, M., J. Vac. Sci. Technol. A2, 574 (1984).Google Scholar
4. Heyns, M., Hasenack, C., Keersmaecker, R. De, and Falster, R., Proc. of the 1st Int. Symp. on Cleaning Technology in Semiconductor Device Manufacturing, Fall ECS 1989, ed. by Ruzyllo, J and Novak, R.E., PV 90-9, 293 (Electrochemical Society, Pennington, NJ, 1990).Google Scholar
5. Ohmi, T., Miyashita, M., and Imaoka, T., Proceedings of the Microcontamination Meeting held October 16-18, 1991, San Jose, CA (Canon Communications, 1991), pg. 491.Google Scholar
6. Robinson, I.K., Phys. Rev. Lett., 57, 2714 (1986).Google Scholar
7. Cowley, R.A. and Ryan, T.W., J. Phys. D 20, 61 (1987).Google Scholar
8. Fuoss, P.H., Norton, L.J., Brennan, S. and Fischer-Colbrie, A., Phys. Rev. Lett., 60, 600, (1988).Google Scholar
9. Iida, Y., Shimura, T., Harada, J., Samata, S. and Matsushita, Y., Surf. Sci., 258, 235 (1991).Google Scholar
10. Rabedeau, T.A., Tidswell, I.M., Pershan, P.S., Bevk, J. and Freer, B.S., Appl. Phys. Lett., 59, 3422 (1991).Google Scholar
11. Robinson, I.K. Phys. Rev. B 33, 3830 (1986).Google Scholar
12. Andrews, S.R. and Cowley, R.A., J. Phys. C 18, 6427 (1985).Google Scholar
13. Fuoss, P.H. and Brennan, S., Annu. Rev. Mater. Sci. 20, 365 (1990).Google Scholar
14. Fuoss, P.H. and Robinson, I.K., Nucl. Instr. Meth., 222 171 (1984)Google Scholar
15. Green, M.P. and Hanson, K., unpublishedGoogle Scholar
16. Bevk, J., private communication.Google Scholar
17. Katsu, H.A., Sumi, Y. and Ohdomari, I., Phys. Rev. B 44, 1616, (1991).Google Scholar