Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T01:14:51.662Z Has data issue: false hasContentIssue false

Comparison of the effect of gate dielectric layer on 2DEG carrier concentration in strained AlGaN/GaN heterostructure

Published online by Cambridge University Press:  01 February 2011

W. Wang
Affiliation:
Department of Electrical Engineering, Katholieke Universiteit Leuven, Belgium
J. Derluyn
Affiliation:
Advanced Research and Technology group, IMEC, Kapeldreef 75, B-3001 Leuven, Belgium Phone: +32–16–288534, e-mail: wenfei.wang@imec.be
M. Germain
Affiliation:
Advanced Research and Technology group, IMEC, Kapeldreef 75, B-3001 Leuven, Belgium Phone: +32–16–288534, e-mail: wenfei.wang@imec.be
I. Dewolf
Affiliation:
Advanced Research and Technology group, IMEC, Kapeldreef 75, B-3001 Leuven, Belgium Phone: +32–16–288534, e-mail: wenfei.wang@imec.be
M. Leys
Affiliation:
Advanced Research and Technology group, IMEC, Kapeldreef 75, B-3001 Leuven, Belgium Phone: +32–16–288534, e-mail: wenfei.wang@imec.be
S. Boeykens
Affiliation:
Advanced Research and Technology group, IMEC, Kapeldreef 75, B-3001 Leuven, Belgium Phone: +32–16–288534, e-mail: wenfei.wang@imec.be
S. Degroote
Affiliation:
Advanced Research and Technology group, IMEC, Kapeldreef 75, B-3001 Leuven, Belgium Phone: +32–16–288534, e-mail: wenfei.wang@imec.be
W. Ruythooren
Affiliation:
Advanced Research and Technology group, IMEC, Kapeldreef 75, B-3001 Leuven, Belgium Phone: +32–16–288534, e-mail: wenfei.wang@imec.be
J. Das
Affiliation:
Advanced Research and Technology group, IMEC, Kapeldreef 75, B-3001 Leuven, Belgium Phone: +32–16–288534, e-mail: wenfei.wang@imec.be
D. Schreurs
Affiliation:
Department of Electrical Engineering, Katholieke Universiteit Leuven, Belgium
B. Nauwelaers
Affiliation:
Department of Electrical Engineering, Katholieke Universiteit Leuven, Belgium
G. Borghs
Affiliation:
Department of Physics, Katholieke Universiteit Leuven, Belgium
Get access

Abstract

The effect of surface passivation on undoped AlGaN/GaN heterostructures using SiO2, Al2O3, Ta2O5 and Si3N4 as a function of layer thickness is presented. It is found that all of the oxides caused decreased 2DEG carrier concentration with increasing thickness of the respective oxide layers between the gate and AlGaN layer. On the contrary, the 2DEG carrier concentration increased strongly with increasing Si3N4 layer thickness. An elementary polarization model was used to fit the behavior for all materials and thicknesses leading to quantitative results. The fitting suggests that the effect of the oxides and Si3N4 on the 2DEG carrier concentration can be explained by the differences between them with respect to charge accumulation at the AlGaN/dielectric interface. High temperature in-situ deposited Si3N4 especially shows interesting behavior by bowing measurements as it also adds strain which increases piezoelectric polarization charge in AlGaN layer, so that increases the charge density in the 2DEG.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ozgur, A., Kim, W., Fan, Z., Botchkarev, A., Salvador, A., Mohammad, S. N., Sverdllov, B., and Morkoc, H., Electron Lett. 31, 1389 (1995)Google Scholar
2. Khan, M. A., Chen, Q., Shur, M. S., MsDermott, M. T., Higgins, J. A., Burm, J., Schaff, W. J., and Eastman, L. F., IEEE Electron Device Lett. 17. 584 (1996)Google Scholar
3. Chen, W. Q. and Hark, S. K., J. Appl. Phys. 77, 5747 (1995)Google Scholar
4. Asbeck, P. M., Yu, E. T., Lau, S. S., Sullivan, G. J., and Van Hove, J., Redwing, Electron. Lett. 33, 1230 (1997)Google Scholar
5. Sheppard, S. T. et al., Device Research Conf., CO, June 19–21, 2000, Conference Digest, p. 37.Google Scholar
6. Nguyen, N. X. et al., Electron. Lett., 36, no. 5, pp. 468469 (2000)Google Scholar
7. Wu, Y.-F. et al., IEDM Tech. Dig., Dec. 6–8, 1999, pp. 925927.Google Scholar
8. Shealy, J. R., Kaper, V., Tilak, V., Prunty, T., Smart, J. A., Green, B. and Eastman, L. F., J. Phys: Condens. Matter 14, 3499 (2002)Google Scholar
9. Nguyen, C. et al., Electron. Lett., 35, no. 16, pp. 13801382. (1999)Google Scholar
10. Kohn, E. et al., Electron. Lett., 35, pp. 10221024, Dec.(1999)Google Scholar
11. Arulkumaran, S., Egawa, T., Ishikawa, H., and Jimbo, T., Appl. Phys. Lett. 81, 3073 (2002)Google Scholar
12. Arulkumaran, S., Egawa, T., Ishikawa, H., Jimbo, T., and Umeno, M., Appl. Phys. Lett. 73, 809 (1998)Google Scholar
13. Dang, X. Z., Yu, E. T., Piner, E. J., and McDermott, B. T., J. Appl. Phys. 90, 1357 (2001)Google Scholar
14. Lu, W. et al., Solid-State Electron. 46, 1441 (2002)Google Scholar
15. Jia, L. et al., Appl. Phys. Lett. 79, (2001)Google Scholar
16. Prunty, T. R. et al., IEEE/Cornell Conf. on High Performance Devices (Ithaca, NY, 2000)Google Scholar
17. Ambacher, O., Smart, J. A., Shcaly, J. R., Weimann, N. G., Chu, K., Murphy, M., Schaff, W. J., Eastman, L. F., Dimitrov, R., Wittmer, L., Stutzmann, M., Ricger, W., and Hilsenbeck, J., J. Appl. Phys., 85, 3222 (1999)Google Scholar
18. Arulkumaran, S. et al. Appl. Phys. Lett. 84, 613 (2004)Google Scholar
19. Hsu, J.W,.P. et al. Appl. Phys. Lett. 77, 2873 (2000)Google Scholar