Skip to main content Accessibility help

Comparison of Pr-doped Ca 122 and Ca 112 Pnictides by Low-field Microwave Absorption Spectroscopy

  • Austin R. Howard (a1), Jonathan D. Yuen (a1), Bing Lv (a2), Myron Salamon (a1) (a3), Ching-Wu Chu (a2) and Anvar A. Zakhidov (a1)...


Praseodymium doped CaFe2As2 (122 structure) and CaFeAs2 (112 structure) are characterized by modulated Low Magnetic Field Microwave Absorption (LFMA) spectroscopy. In both (Pr,Ca)122 and (Pr,Ca)112 structures, a strong hysteretic LFMA is found, with a T c H of ∼30 K and ∼26 K, respectively. However, in (Pr,Ca)122, measurements also show an unusual Narrow Peak (NP) LFMA signal appearing at higher temperatures, above the lower T c H superconducting state until a T c NP of 49 K. We associate this NP LFMA with interfacial superconductivity, which has been found previously by highly anisotropic magnetization measurements. Furthermore, the absence of NP in (Pr,Ca)112 correlates with the absence of an interfacial phase. These results give useful information about the microwave signature of interfacial superconductivity present in the (Pr,Ca)122 system, and may form a roadmap towards a stabilized high temperature superconducting phase in pnictides.



Hide All
[1] Sasmal, K., Lv, B., Lorenz, B., Guloy, A. M., Chen, F., Xue, Y.-Y., and Chu, C.-W., Phys. Rev. Lett. 101, 107007 (2008).10.1103/PhysRevLett.101.107007
[2] Lv, B., Deng, L., Gooch, M., Wei, F., Sun, Y., Meen, J. K., Xue, Y.-Y., Lorenz, B., and Chu, C.-W., Proceedings of the National Academy of Sciences 108, 15705 (2011).10.1073/pnas.1112150108
[3] Kim, J. S., Khim, S., Yan, L., Manivannan, N., Liu, Y., Kim, I., Stewart, G. R., and Kim, K. H., J. Phys.: Condens. Matter 21, 102203 (2009).
[4] Chu, C. W. and Lorenz, B., Physica C: Superconductivity 469, 385 (2009).10.1016/j.physc.2009.03.030
[5] Rotter, M., Tegel, M., and Johrendt, D., Phys. Rev. Lett. 101, 107006 (2008).10.1103/PhysRevLett.101.107006
[6] Yakita, H., Ogino, H., Okada, T., Yamamoto, A., Kishio, K., Tohei, T., Ikuhara, Y., Gotoh, Y., Fujihisa, H., Kataoka, K., Eisaki, H., and Shimoyama, J.-I., J. Am. Chem. Soc. 136, 846 (2014).10.1021/ja410845b
[7] Katayama, N., Kudo, K., Onari, S., Mizukami, T., Sugawara, K., Sugiyama, Y., Kitahama, Y., Iba, K., Fujimura, K., Nishimoto, N., Nohara, M., and Sawa, H., J. Phys. Soc. Jpn. 82, (2013).10.7566/JPSJ.82.123702
[8] Wei, F. Y., Lv, B., Deng, L. Z., Meen, J. K., Xue, Y. Y., and Chu, C. W., Multiple Values Selected (2013).
[9] Kudo, K., Iba, K., Takasuga, M., Kitahama, Y., Matsumura, J.-I., Danura, M., Nogami, Y., and Nohara, M., Sci. Rep. 3, (2013).
[10] Lund, A., Shigetaka, S., and Shimada, M., Principles and Applications of ESR Spectroscopy (Springer, Dordrecht, 2011).10.1007/978-1-4020-5344-3
[11] Talanov, Y., Studies of High Temperature Superconductors 49, 169 (2005).
[12] Stankowski, J., Metrology and Measurement Systems Vol. 13, 125 (2006).
[13] Shaposhnikova, T., Talanov, Y., and Tsarevskii, S., Physica C: Superconductivity 451, 90 (2007).10.1016/j.physc.2006.10.009
[14] Shaposhnikova, T., Talanov, Y., and Vashakidze, Y., Physica C: Superconductivity 385, 383 (2003).10.1016/S0921-4534(02)02103-2
[15] Lv, B., Wei, F. Y., Deng, L. Z., Xue, Y. Y., and Chu, C. W., arXiv:1308.3129v1 (2013).
[16] Nebendahl, B., Kessler, C., Peligrad, D.-N., and Mehring, M., Physica C: Superconductivity and Its Applications 209, 362 (1993).10.1016/0921-4534(93)90546-3
[17] Hunter, J. D., Comput. Sci. Eng. 9, 90 (2007).10.1109/MCSE.2007.55



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed