Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-30T00:53:46.580Z Has data issue: false hasContentIssue false

Comparison of Mesa- Etched and Ion- Implanted GexSi1-x Heterojunction Bipolar Transistors

Published online by Cambridge University Press:  03 September 2012

D. W. Greve
Affiliation:
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
M. Racanelli
Affiliation:
Advanced Technology Center, Motorola, Inc., Mesa, AZ 85202
Get access

Abstract

We report a comparison of the characteristics of germanium- silicon base heterojunction bipolar transistors fabricated using mesa- etched and ion- implanted processes. The base currents of both device structures are dominated by peripheral currents associated with the plasma- SiO2 covered junction edge. After an implant damage anneal at 800 or 900 C, the ion- implanted process exhibited the lowest base currents. There was no evidence of strained layer relaxation even for the 900 C anneal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Patton, G. L., Comfort, L. H., Meyerson, B. S., Crabbé, E. F., Scilla, G. J., de Frésart, E., Stork, J. M. C., Sun, J. Y. -C., Harame, D. L., and Burghartz, J. N., IEEE Electron Device Utters EDL-11, 171 (1990).Google Scholar
2. Sturm, J. C., Prinz, E. J., and Magee, C. W., IEEE Electron Device Letters EDL-12, 303 (1991).Google Scholar
3. Pruijmboom, A., Slotboom, J. W., Gravesteijn, D. J., Fredriksz, C. W., van Gorkum, A. A., van de Heuvel, R. A., van Rooij- Mulder, J. M. L., Streutker, G., and van de Walle, G. F. A., IEEE Electron Device Letters EDL-12, 357 (1991).CrossRefGoogle Scholar
4. King, C. A., Hoyt, J. L., and Gibbons, J. F., IEEE Trans. Electron Devices ED-36, 2093 (1989).Google Scholar
5. Sturm, J. C., Schwartz, P. V., Prinz, E. J., and Manoharan, H., J. Vac. Sci. Technol. B9, 2011 (1991).CrossRefGoogle Scholar
6. Shaft, Z. A., Gibbings, C. J., Ashburn, P., Post, I. R. C., Tuppen, C. F., and Godfrey, D. J., IEEE Trans. Electron Devices ED-38, 1973 (1991).CrossRefGoogle Scholar
7. Gruhle, A., Kibbel, H., König, U., Erben, U., and Kasper, E., IEEE Electron Device Letters EDL-13, 206 (1992)Google Scholar
8. Greve, D. W. and Racanelli, M., J. Vac. Sci. Technol. B8, 511 (1990).Google Scholar
9. Houghton, D. C., J. Appl. Phys. 70, 2136 (1991).Google Scholar
10. Racanelli, M. and Greve, D. W., J. Vac. Sci. Technol. B9, 2017 (1991).Google Scholar
11. Racanelli, M., Greve, D. W., Hatalis, M. K., and van Yzendoorn, L. J., J. Electrochem. Soc. 138, 3784 (1991).Google Scholar
12. Kamins, T. I., Nauka, K., Kruger, J. B., Hoyt, J. L., King, C. A., Noble, D. B., Gronet, C. M., and Gibbons, J. F., IEEE Electron Device Utters EDL-10, 503 (1989)Google Scholar
13. Racanelli, M. and Greve, D. W., Proc. 2nd. In'l. Conf. on Elec. Matls., pp. 513– 518 (Mater. Res. Soc. Pittsburgh, PA 1990).Google Scholar
14. Greve, D. W., Potyraj, P. A., and Guzman, A. M., Solid St. Electron. 28, 1255 (1985).Google Scholar
15. People, R., Phys. Rev. B32, 1045 (1985).Google Scholar
16. Lang, D. V., People, R., Bean, J. C., and Sergent, A. M., Appl. Phys. Utt. 47, 1333 (1985).Google Scholar
17. Vitkavage, D. J., Fountain, G. G., Rudder, R. A., Hattangady, S. V., and Markunas, R. J., Appl. Phys. Utt. 53, 692 (1988)Google Scholar
18. Batey, J., Tierney, E., and Nguyen, T. N., IEEE Electron Device Letters EDL-8, 148 (1987).CrossRefGoogle Scholar