Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-29T06:51:24.482Z Has data issue: false hasContentIssue false

Comparison of Low Temperature Photoluminescence of Bulk MBE Grown AlGaAs and GaAs Using a Graphite Generated Dimerb Versus a Standard Tetramer Arsenic Group-V Source

Published online by Cambridge University Press:  26 February 2011

Thomas M. Brennan
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
B. E. Hammons
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
M. C. Smith
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
E. D. Jones
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

The carbon concentrations in GaAs and AIGaAs grown by Molecular Beam Epitaxy (MBE) have been studied when a graphite generated dimeric arsenic species and a standard tetramer arsenic species are used as the group-V source. Photoluminescence and Van der Pauw-Hall measurements have been made to examine the material quality in reference to which arsenic species is used for film growth. Results indicate that a graphite crucible arrangement for the thermal cracking of As4 produces significant carbon contamination and is unacceptable for the MBE growth of GaAs and AlGaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tsang, W. T., Appl. Phys. Lett. 39, 786 (1981).Google Scholar
2.Kroemer, H., Proc. IEEE 70, 13 (1982).Google Scholar
3.Kunzel, H. and Ploog, K., Appl. Phys. Lett. 37, 416 (1980).Google Scholar
4.Foxon, C. T., Dawson, P., Duggan, G., and Thooft, G. W., collected paper of MBE, CST-2 (Japan Society of Applied Physics, Tokyo, 1982).Google Scholar
5.Farrow, R. F. C., Sullivan, P. W., Williams, G. M., and Stanley, C. R., collected paper of MBE, CST-2 (Japan Society of Applied Physics, Tokyo, 1982).Google Scholar
6.Calawa, A. R., Appl. Phys. Lett. 38, 701 (1981).Google Scholar
7.Huet, D., Lambert, M., Bonnevie, D., and Dufresne, D., J. Vac. Sci. Technol. B3, 823 (1985).Google Scholar
8.Kunzel, H., Knecht, J., Jung, H., Wumstel, K., and Ploog, K., Appl. Phys. A 28, 167 (1982)Google Scholar
9.Duggan, G., Dawson, P., Foxon, C. T., and Thooft, G. W., J. Phys. (Paris) Coll. C5 43, 129 (1982).Google Scholar
10.Neave, J. H., Blood, P., and Joyce, B. A., Appl. Phys. Lett. 36, 311 (1980).Google Scholar
11.Erickson, L. P., Mattford, T. J., Palmberg, P. W., Fischer, R. and Morkoc, H., Electron. Lett. 19, 632 (1983).Google Scholar
12.Panish, M. B. and Sumski, S., J. Appl. Phys. 55, 3517 (1984).Google Scholar
13.Garcia, J. C., Barski, A., Contour, J. P., and Massies, J., Appl. Phys. Lett. 51 (8), 24 August 1987.Google Scholar
14.Cho, A. Y., Casey, H. C., Radice, C., and Foy, P. W., Electron. Lett. 16, 72 (1980). A. Y. Cho, Thin Solid Films, 100, 291 (1983).Google Scholar
15.Drummond, T. J., Morkoc, H., and Cho, A. Y., J. Cryst. Growth 56, 449 (1982).Google Scholar