Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-06T20:22:00.128Z Has data issue: false hasContentIssue false

Comparison of Aromatic Dithiophosphinic and Phosphinic Acid Derivatives for Minor Actinide Extraction

Published online by Cambridge University Press:  01 February 2011

Mason K. Harrup
Affiliation:
Mason.Harrup@inl.gov, Idaho National Laboratory, Idaho Falls, ID, 83415, United States
Dean R. Peterman
Affiliation:
Dean.Peterman@inl.gov, Idaho National Laboratory, Idaho Falls, ID, 83415, United States
Mitchell R. Greenhalgh
Affiliation:
Mitchell.Greenhalgh@inl.gov, Idaho National Laboratory, Idaho Falls, ID, 83415, United States
Thomas A. Luther
Affiliation:
Thomas.Luther@inl.gov, Idaho National Laboratory, Idaho Falls, ID, 83415, United States
John Klaehn
Affiliation:
john.klaehn@inl.gov, Idaho National Laboratory, Chemical Sciences, P.O. Box 1625, Idaho Falls, ID, 83415-2208, United States
Get access

Abstract

A new extractant for the separation of actinide(III) and lanthanide(III), bis(o-trifluoromethylphenyl)phosphinic acid (O-PA) was synthesized. The synthetic route employed mirrors one that was employed to produce the sulfur containing analog bis(o-trifluoromethylphenyl)dithiophosphinic acid (S-PA). Multinuclear NMR spectroscopy was used for elementary characterization of the new O-PA derivative. This new O-PA extractant was used to perform Am(III)/Eu(III) separations and the results were directly compared to those obtained in identical separation experiments using S-PA, an extractant that is known to exhibit separation factors of ∼100,000 at low pH. The separations data are presented and discussed in terms comparing the nature of the oxygen atom as a donor to that of the sulfur atom in extractants that are otherwise identical.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Choppin, G.R. J. Less-Common Met. 93, 323 (1983).Google Scholar
2 Jensen, M.P.; Bond, A.H. J. Am. Chem. Soc. 124, 9870 (2002).Google Scholar
3 Chen, J.; Zhu, Y. J.; Jiao, R. Z. Sep. Sci. Technol. 31, 19 (1996).Google Scholar
4 Modolo, G.; Nabet, S. Solvent Extr. Ion. Exch. 23, 359 (2005).Google Scholar
5 Law, J.D.; Peterman, D.R.; Todd, T.A.; Tillotson, R.D. Radiochimica Acta 94, 261 (2006).Google Scholar
6 Guoxin, T.; Yongjun, Z.; Jingming, X. Solvent Extr. Ion. Exch. 19, 993 (2001).Google Scholar
7 Xu, Q. Wu, J.; Zhang, L.; Yang, Y. J. Radioanalytical Nuclear Chem. 273, 235 (2007).Google Scholar
8 Chen, J.; Jiao, R.; Zhu, Y, Solvent Extr. Ion Exch. 14, 555 (1996).Google Scholar
9 Modolo, G.; Odoj, R. J. Radioanalytical Nuc. Chem. 228, 83 (1998).Google Scholar
10 Modolo, G.; Odoj, R. U.S. Patent No. 6,312,654, Nov. 6, 2001.Google Scholar
11 Modolo, G.; Odoj, R. J. C. Solvent Extr. Ion Exch. 17, 33 (1999).Google Scholar
12 Klaehn, J. R.; Peterman, D. R.; Tilloston, R. D.; Luther, T. A.; Harrup, M. K.; Law, J. D.; Daniels, L. M., Inorg. Chim. ACTA, (2008) (accepted manuscript).Google Scholar
13 Peterman, D.R.; Greenhalgh, M.R.; Tillotson, R.D.; Klaehn, J.R.; Harrup, M.K.; Luther, T.A.; Law, J.D.; Daniels, L.M. Proceedings of ISEC (2008) (in press).Google Scholar
14 Peterman, D.R.; Greenhalgh, M.R.; Tillotson, R.D.; Klaehn, J.R.; Harrup, M.K.; Luther, T.A.; Law, J.D.; Daniels, L.M. Solvent Extr. Ion Exch. (2008) (in press).Google Scholar
15 Turanov, A.N.; Karandashev, V.K.; Yarkevich, A.N. Solvent Extr. Ion Exch. 20, 633 (2006).Google Scholar
16 Koladkar, D.V.; Dhadke, P.M. Solvent Extr. Ion Exch. 19, 1059 (2001).Google Scholar