Skip to main content Accessibility help
×
Home

Comparison Of A Mosaic-Crystal Spectrometer To Ahigh-Performance Solid-State Detector For X-Ray Microfluorescence Analysis

  • J.-S. Chung (a1), S. Isa (a1), C. J. Sparks (a1), G. E. Ice (a1), S. Mchugo (a2) and A. Thompson (a2)...

Abstract

The minimum-detectable-limit of a compact double-focusing graphite mosaic-crystal spectrometer is compared to the minimum-detectable-limit from a high-performance Ge solidstate detector. The solid angle and efficiency of the solid-state detector is much greater than for the crystal spectrometer. However, the better signal-to-noise of the spectrometer and its insensitivity to matrix fluorescence and scattering can give it a better minimum-detectable-limit for trace element analysis. The relative advantages of the two detectors are illustrated for some simple test samples. The performance of the crystal spectrometer compared to the solid-state detector increases as the flux in the x-ray probe increases. This makes crystal spectrometers especially interesting for use with new high intensity 3rd generation synchrotron microprobes. An estimate is made of the source and sample conditions favored for each detector.

Copyright

References

Hide All
1. Chen, J. R., Chao, E. C. T., Minkin, J. A., Back, J. M., Jones, K. W., Rivers, M. L. and Sutton, S. R., Nucl. Instr. and Meth. B49 533 (1990).
2. Beaman, D. R. and Solosky, L. F., Anal. Chem. 44 15981610 (1972).
3. Legge, G. J. F. and Saint, A., Nucl. Inst. and Meth B49 418 (1990).
4. Sparks, C. J., “X-ray Fluorescence Microprobe for Chemical Analysis”, in Synchrotron Radiation Research, edited by Winick, H. and Doniach, S., 459 (Plenum Press 1980); L. A. Currie, Anal. Chem. 40 587 (1968).
5. Chevallier, P. and Dhez, P., Hard X-ray Microbeam: Production and Application.in Accelerator based atomic physics techniques and applications (Shafroth, S.M. and Austin, J. eds.) pp. 309348 AIP Press, New York.
6. Ice, G. E., X-ray Spectrometry 26 315-326 (1997).
7. Smith, A. D., Derbyshire, G. E., Farrow, R. C., Sery, A., Raudorf, T. W. and Martini, M., Rev. Sci. Instrum. 66 2333 (1995).
8. Folkmann, F. and Frederiksen, F., Nucl. Inst. and Meth. B49 126 (1990).
9. Ice, G. E. and Sparks, C. J., Nucl. Inst. and Meth. A291 110-116 (1990).
10. Sparks, C. J., Harris, L. A. and Cavin, O. B., “Development of High Sensitivity X-ray Fluorescence for Analysis of Trace Toxic Elements”, ORNL-NSF-EATC-1 (Progress Report) 1972.
12. Baryshev, V., Kolmogorov, Y., Kulipanov, G., and Skrinsky, A., Nucl. Inst. and Meth A246 739 (1986).
13. Kirkland, J. P., Kovantsev, V. E., Dozier, C. M., Gilfrich, J. V., Gibson, W. M., Xiao, Q. F., Umezawa, K., Rev. Sci. Inst. 66 1410-1412 (1995).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed