Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-16T11:57:15.628Z Has data issue: false hasContentIssue false

Comparison Of A Mosaic-Crystal Spectrometer To Ahigh-Performance Solid-State Detector For X-Ray Microfluorescence Analysis

Published online by Cambridge University Press:  10 February 2011

J.-S. Chung
Affiliation:
*Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge TN 37830
S. Isa
Affiliation:
*Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge TN 37830
C. J. Sparks
Affiliation:
*Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge TN 37830
G. E. Ice
Affiliation:
*Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge TN 37830
S. Mchugo
Affiliation:
**Lawrence Berkeley National Laboratory, I Cyclotron Rd., Berkeley CA 94720
A. Thompson
Affiliation:
**Lawrence Berkeley National Laboratory, I Cyclotron Rd., Berkeley CA 94720
Get access

Abstract

The minimum-detectable-limit of a compact double-focusing graphite mosaic-crystal spectrometer is compared to the minimum-detectable-limit from a high-performance Ge solidstate detector. The solid angle and efficiency of the solid-state detector is much greater than for the crystal spectrometer. However, the better signal-to-noise of the spectrometer and its insensitivity to matrix fluorescence and scattering can give it a better minimum-detectable-limit for trace element analysis. The relative advantages of the two detectors are illustrated for some simple test samples. The performance of the crystal spectrometer compared to the solid-state detector increases as the flux in the x-ray probe increases. This makes crystal spectrometers especially interesting for use with new high intensity 3rd generation synchrotron microprobes. An estimate is made of the source and sample conditions favored for each detector.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, J. R., Chao, E. C. T., Minkin, J. A., Back, J. M., Jones, K. W., Rivers, M. L. and Sutton, S. R., Nucl. Instr. and Meth. B49 533 (1990).Google Scholar
2. Beaman, D. R. and Solosky, L. F., Anal. Chem. 44 15981610 (1972).Google Scholar
3. Legge, G. J. F. and Saint, A., Nucl. Inst. and Meth B49 418 (1990).Google Scholar
4. Sparks, C. J., “X-ray Fluorescence Microprobe for Chemical Analysis”, in Synchrotron Radiation Research, edited by Winick, H. and Doniach, S., 459 (Plenum Press 1980); L. A. Currie, Anal. Chem. 40 587 (1968).Google Scholar
5. Chevallier, P. and Dhez, P., Hard X-ray Microbeam: Production and Application.in Accelerator based atomic physics techniques and applications (Shafroth, S.M. and Austin, J. eds.) pp. 309348 AIP Press, New York.Google Scholar
6. Ice, G. E., X-ray Spectrometry 26 315-326 (1997).Google Scholar
7. Smith, A. D., Derbyshire, G. E., Farrow, R. C., Sery, A., Raudorf, T. W. and Martini, M., Rev. Sci. Instrum. 66 2333 (1995).Google Scholar
8. Folkmann, F. and Frederiksen, F., Nucl. Inst. and Meth. B49 126 (1990).Google Scholar
9. Ice, G. E. and Sparks, C. J., Nucl. Inst. and Meth. A291 110-116 (1990).Google Scholar
10. Sparks, C. J., Harris, L. A. and Cavin, O. B., “Development of High Sensitivity X-ray Fluorescence for Analysis of Trace Toxic Elements”, ORNL-NSF-EATC-1 (Progress Report) 1972.Google Scholar
12. Baryshev, V., Kolmogorov, Y., Kulipanov, G., and Skrinsky, A., Nucl. Inst. and Meth A246 739 (1986).Google Scholar
13. Kirkland, J. P., Kovantsev, V. E., Dozier, C. M., Gilfrich, J. V., Gibson, W. M., Xiao, Q. F., Umezawa, K., Rev. Sci. Inst. 66 1410-1412 (1995).Google Scholar