Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T07:14:02.620Z Has data issue: false hasContentIssue false

A Comparison Between Dry Etching with an Electron Cyclotron Resonance Source and Reactive Ion Etching for GaAs and InP

Published online by Cambridge University Press:  26 February 2011

S. W. Pang*
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109–2122
Get access

Abstract

Etching with an electron cyclotron resonance (ECR) source provides several advantages over conventional reactive ion etching (RIE). In this work, the results of GaAs and InP etching using a multipolar ECR source are presented and compared to RIE. The effects of microwave and rf power, gas composition, pressure, and source to sample distance on the etch characteristics of GaAs and InP were evaluated. Three different etch gases were used including CCl2F2, BCl3, and Cl2. The influence of microwave power on etch characteristics is compared to conventional parallel plate system using rf power alone.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lincoln, G. A., Geis, M. W., Pang, S. W., and Efremow, N. N., J. Vac. Sci. Technol. B 1, 1043 (1983).CrossRefGoogle Scholar
2. Pang, S. W., Goodhue, W. D., Lyszczarz, T. M., Ehrlich, D. J., Goodman, R. B., and Johnson, G. D., J. Vac. Sci. Technol. B 6, 1916 (1988).CrossRefGoogle Scholar
3. Cheung, R., Lee, Y. H., Lee, K. Y., Smith, T. P., Kern, D. P., Beamont, S. P., and Wilkinson, C. D. W., J. Vac. Sci. Technol. B 2, 1462 (1989).CrossRefGoogle Scholar
4. Pearton, S. J., Chakrabarti, U. K., Kinsella, A. P., Johnson, D., and Constantine, C., Appl. Phys. Lett. 56, 1424 (1990).CrossRefGoogle Scholar
5. Pearton, S. J., Chakrabarti, U. K., Katz, A., Perley, A. P., Hobson, W. S., and Constantine, C., J. Vac. Sci. Technol. B. 9, 1421 (1991).CrossRefGoogle Scholar
6. Pang, S. W., Liu, Y., and Sung, K. T., J. Vac. Sci. Technol. B. 9, 3530 (1991).CrossRefGoogle Scholar
7. Sze, F. C., Reinhard, D. K., Musson, B., and Asmussen, J., J. Vac. Sci. Technol. B 8, 1759 (1990).CrossRefGoogle Scholar
8. McNevin, S. C., J. Vac. Sci. Technol. B 4, 1203 (1986).CrossRefGoogle Scholar
9. Tadokoro, T., Koyama, F., and Iga, K., J. Vac. Sci. Technol. B 7, 1111 (1989).CrossRefGoogle Scholar