Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-22T17:11:13.814Z Has data issue: false hasContentIssue false

Comparative Study of GaN Based Light Emitting Devices Grown on Sapphire and GaN Substrates

Published online by Cambridge University Press:  01 February 2011

Stephan Figge
Affiliation:
University of Bremen, Institute of Solid State Physics, Semiconductor Epitaxy, 28359 Bremen, Germany
Jens Dennemarck
Affiliation:
University of Bremen, Institute of Solid State Physics, Semiconductor Epitaxy, 28359 Bremen, Germany
Gabriela Alexe
Affiliation:
University of Bremen, Institute of Solid State Physics, Semiconductor Epitaxy, 28359 Bremen, Germany
Detlef Hommel
Affiliation:
University of Bremen, Institute of Solid State Physics, Semiconductor Epitaxy, 28359 Bremen, Germany
Get access

Abstract

The homoeptaxial growth of GaN based devices has advantages against the heteroepi-taxial realization on substrates such as sapphire or SiC, since heteroepitaxy implies a lot of problems like lattice mismatch, different thermal expansion coefficients, and needs an extensive optimization of the growth at the heterointerface. In this paper we will discuss GaN based light emitting devices grown by homoepitaxy in comparison to devices grown on sapphire. We will show the differences in device performance, device processing and the influence of the thermal resistivity on the devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986).Google Scholar
[2] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugi-moto, Y., and Kiyoku, H., J. Appl. Phys. 69, 4056 (1996).Google Scholar
[3] Tojyo, T., Asano, T., Takeya, M., Hino, T., Kijima, S., Goto, S., Uchida, S., and Ikeda, M., Japn. J. Appl. Phys. 40, 3206 (2001).Google Scholar
[4] Nam, O., Bremser, M. D., Zheleva, T. S., and Davis, R. F., Appl. Phys. Lett. 71, 2638 (1997).Google Scholar
[5] Zheleva, T. S., Nam, O.-H., Bremser, M. D., and Davis, R. F., Appl. Phys. Lett. 71, 2472 (1997).Google Scholar
[6] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sug-imoto, Y., and Hiroyuk, Y., Japn. J. Appl. Phys. 36, L1059 (1997).Google Scholar
[7] Tojyo, T., Uchida, S., Mizuno, T., Asano, T., Takeya, M., Hino, T., Kijima, S., Goto, S., Yabuki, Y., and Ikeda, M., J. Appl. Phys. 41, 1829 (2002).Google Scholar
[8] Figge, S., Böttcher, T., Einfeldt, S., and Hommel, D., J. Cryst. Growth 221, 262 (2000).Google Scholar
[9] Dennemarck, J., Böttcher, T., Figge, S., Einfeldt, S., Kröger, R., Hommel, D., Kaminska, E.. Wiatroszak, W., and Piotrowska, A., Phys. Stat. Sol. (c) 1, 2537 (2004).Google Scholar
[10] Einfeldt, S., Böttcher, T., Figge, S., Hommel, D., J. Cryst. Growth 230, 357 (2001).Google Scholar
[11] Böttcher, T., Zellweger, C., Figge, S., Kröger, R., Petter, C., Buhlmann, H. J., Ilegems, M., Ryder, P. L., Hommel, D., Phys. Stat. Sol. (a) 191, R3 (2002).Google Scholar
[12] Sichel, E. K. and Pankove, J. I., J. Phys. Chem. Sol. 38, 330 (1977).Google Scholar
[13] Belyaev, L. M. in Ruby and Sapphire, Amerind Publishing Co. New Delhi (1980).Google Scholar
[14] Figge, S., Böttcher, T., Hommel, D., Zellweger, Chr., Illegems, M., Phys. Stat. Sol. (a) 200, 83 (2003).Google Scholar
[15] Petalas, S., Logothetidis, S., Boultadakis, S., Alouani, M., and Wills, J. M., Phys. Rev. B 52, 8082 (1995).Google Scholar