Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-11T23:29:21.032Z Has data issue: false hasContentIssue false

Combustion Synthesis of Niobium Aluminide Matrix Composites

Published online by Cambridge University Press:  15 February 2011

C. R. Kachelmyer
Affiliation:
University of Notre Dame, Department of Chemical Engineering, Notre Dame, IN 46556
A. Varma
Affiliation:
University of Notre Dame, Department of Chemical Engineering, Notre Dame, IN 46556
Get access

Abstract

Combustion synthesis of NbAl3-matrix composites with Al2O3 and B additions was studied using the thermal explosion mode. The addition of B to the reaction mixture resulted in the formation of NbB2, small amounts of NbB and unreacted Al. The Al2O3 addition did not affect the NbAl3-matrix reaction completion but the final product density increased with increasing Al2O3 loading. In both NbAl3-matrix composites, the reaction was initiated above the melting point of Al.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, C. T. and Stiegler, J. O., in Metals Handbook, edited by Lampman, S.R. et al. , (ASM International, Materials Park, OH, 1990) Vol. 2, pp. 913942.Google Scholar
2. Baker, I. and Munroe, P. R., J. Met., 40, 28 (1988).Google Scholar
3. Stoloff, N. S. and Sims, C. T., in Superalloys II, edited by Sims, C. T., Stoloff, N. S. and Hagel, W.C., (John Wiley & Sons, Inc., New York, 1987), pp. 519527.Google Scholar
4. Munir, Z. A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3, 277 (1989).Google Scholar
5. Merzhanov, A. G., in Combustion and Plasma Synthesis of High-Temperature Materials, edited by Munir, Z. A. and Holt, J. B., (VCH Publishers, New York, 1990) pp.153.Google Scholar
6. Holt, J. B. and Dunmead, S. D., Annu. Rev. Mater. Sci. 21, 305 (1991).Google Scholar
7. Varma, A. and Lebrat, J.-P., Chem. Eng. Sci. 47, 2179 (1992).Google Scholar
8. Lebrat, J.-P. and Varma, A., Comb. Sci. Tech. 88, 211 (1992).Google Scholar
9. Lebrat, J.-P., Varma, A., and McGinn, P. J., J. Mater. Res. (in press).Google Scholar
10. Maslov, V. M., Borovinskaya, I. P., and Ziatdinov, M. Kh., Combust. Explos. Shock Waves 15, 41 (1979).Google Scholar
11. Philpot, K. A., Munir, Z.A., and Holt, J. B., J. Mater. Sci. 22, 159 (1987).Google Scholar
12. Misiolek, W. and German, R. M., Mater. Sci. Eng. A144, 1 (1991).Google Scholar
13. Rabin, B. H. and Wright, R. N., Metall. Trans. A 22A, 277 (1991).Google Scholar
14. Wang, L. L., Munir, Z. A., and Holt, J. B., Metall. Trans. B 21B, 567 (1990).Google Scholar
15. Kachelmyer, C. R., Lebrat, J.-P., Varma, A., and McGinn, P.J., in Heat Transfer in Fire and Combustion Systems, edited by Farouk, B., Pinar Menguc, M. P., Viskanta, R., Presser, C., and Chellaiah, S., (ASME, New York, 1993) pp. 271276.Google Scholar
16. Yi, H. C., Petric, A., and Moore, J. J., Solid State Phenomena 25 & 26, 225 (1992).Google Scholar
17. Lebrat, J.-P., Varma, A., and Miller, A. E., Metall. Trans. A 23A, 69 (1992).Google Scholar
18. Rabin, B. H. and Wright, R. N., Metall. Trans. A 22A, 277 (1991).Google Scholar
19. Ho, C. T., Lakshmikantha, M. G., and Sekhar, J. A., in Processing and Fabrication of Advanced Materials for High Temperature Applications, edited by Ravi, V.A. and Srivastan, T.S., (Warrendale, Pennsylvania, 1992) pp. 2343.Google Scholar
20. Bhattacharya, A. K., J. Am. Ceram. Soc. 75, 1678 (1992).Google Scholar
21. Kachelmyer, C. R. and Varma, A., J. Mater. Res. (in review).Google Scholar
22. Lebrat, J.-P. and Varma, A., Physica C 184, 220 (1991).Google Scholar