Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T12:44:51.726Z Has data issue: false hasContentIssue false

Combined Experimentaland Theoretical Determination of the Atomic Structure of the (310) Twin in NB

Published online by Cambridge University Press:  25 February 2011

Geoffrey H. Campbells
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550
Wayne E. King
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550
Stephen M. Foiles
Affiliation:
Sandia National Laboratories, Livermore, CA 94551
Peter Gumbsch
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, 7000 Stuttgart 1, Germany
Manfred Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, 7000 Stuttgart 1, Germany
Get access

Abstract

A (310) twin boundary in Nb has been fabricated by diffusion bonding oriented single crystals and characterized using high resolution electron microscopy. Atomic structures for the boundary have been predicted using different interatomic potentials. Comparison of the theoretical models to the high resolution images has been performed through image simulation. On the basis of this comparison, one of the low energy structures predicted by theory can be ruled out.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENces

1. Foiles, S.M., in Surface Segregation Phenomena, edited by Dowben, P.A. and Miller, A. (CRC Press, Boca Raton, 1990).Google Scholar
2. Daw, M.S., in Reconstruction of Solid Surfaces, edited by Christmann, K. and Heinz, K., (Springer-Verlag, Berlin, in press).Google Scholar
3. Wolf, D., Philos. Mag. A 62 (1990) 447464.Google Scholar
4. Johnson, R.A. and Oh, D.J., J. Mater. Res. 4 (1989) 1195.Google Scholar
5. Ackland, G.J. and Thetford, R., Philos. Mag. A 50 (1987) 1530.Google Scholar
6. Moriarty, J.A. in Many-Atom Interactions in Solids, edited by Nieminen, R.N., Puska, M.J., and Manninen, M.J. (Springer-Verlag, Berlin, 1990) p. 158.Google Scholar
7. Wasserbäch, W. and Rapp, M., Practical Metallography 16 (1979) 131146.Google Scholar
8. Stadelmann, P., Ultramicroscopy 21 (1987) 131146.Google Scholar
9. Barry, J.C. in Computer Simulations of Electron Microscope Diffraction and Images, edited by Krakow, W. and O'Keefe, M. (the Minerals, Metals, and Materials Society, Warrendale, PA 1989), pp. 5778.Google Scholar
10. King, W.E., Campbell, G.H., Coombs, A., Mills, M.J., and Rühle, M. in Defects in Materials. edited by Bristowe, P.D., Epperson, J.E., Griffith, J.E., and Liliental-Weber, Z. (Mater. Res. Soc. Proc. 202, Pittsburgh, PA, 1990) pp. 3946.Google Scholar
Vitek, U.V., Minonishi, Y., and Wang, G.-J., J. de Physique 46 (suppl. 4) 171183 (1985).Google Scholar
12. Krakow, W., Philos. Mag. A 63 (1991) 233240.CrossRefGoogle Scholar
13. Segali, R. L., Acta Metall. 9, (1961) 975976.Google Scholar
14. Keh, A. S. and Weissmann, S., in Electron Microscopy and Strength of Crystals, edited by Thomas, G. and Washburn, J. (Interscience, New York, 1963), pp. 231300.Google Scholar
15. Hartley, C. S., Philos. Mag. 14 (1966) 12071217.Google Scholar
16. Pirouz, P. and Ernst, F. in Metal/Ceramic Interfaces, edited by Riihle, M., Evans, A. G., Ashby, M.F., and Hirth, J. P. (Pergamon Press, New York, 1990) pp. 199233.Google Scholar