Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-23T17:56:07.305Z Has data issue: false hasContentIssue false

A Combined Density Functional and Monte Carlo Study of Polycarbonate

Published online by Cambridge University Press:  21 March 2011

R. O. Jones
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
P. Ballone
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

Density functional computations have been performed to investigate the structure, potential en- ergy surface and reactivity for organic systems closely related to bisphenol-A-polycarbonate(BPA- PC). The results provide the basis for the construction of two different empirical models, the first extending the atomistic simulations into the mesoscopic range (104–105 atoms and 0.01–0.1 μs), the second providing an idealized description of polymerization in BPA-PC. The combination of models and computational techniques focusing on different length and time scales provides a route to determine mechanical and thermal properties of materials without experimental input.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gennes, P. G. de, Phys. Lett. 38A, 339 (1972).Google Scholar
[2] Jones, R. O. and Gunnarsson, O., Rev. Mod. Phys. 61, 689 (1989).Google Scholar
[3] Perdew, J. P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
[4] Montanari, B., Ballone, P. and Jones, R. O., Macromolecules 32 3396 (1999).Google Scholar
[5] Montanari, B., Ballone, P. and Jones, R. O., J. Chem. Phys. 108, 6947 (1998).Google Scholar
[6] Perez, S. and Scaringe, R. P., Macromolecules 20, 68 (1987).Google Scholar
[7] Henrichs, P. M., Luss, R. H., and Scaringe, R. P., Macromolecules 22, 2731 (1989).Google Scholar
[8] Montanari, B., Ballone, P., Jones, R. O., Macromolecules 31, 7784 (1998).Google Scholar
[9] Computations have been done with the CPMD program version 3.0, Hutter, J. et al., Max- Planck-Institut für Festkörperforschung and IBM Research 1990-1999.Google Scholar
[10] See, for example, Price, S. L., in: Computer Simulation in Materials Science, Proceedings of a NATO Advanced Study Institute, Aussois, France, Series E. Edited by Meyer, M. and Pontikis, V. (Kluwer, Dordrecht, Netherlands, 1991), p. 183.Google Scholar
[11] Clark, M., Cramer, R. D. III, Opdenbosch, N. Van, J. Comput. Chem. 10, 982 (1989).Google Scholar
[12] Ballone, P., Montanari, B., Jones, R. O. and Hahn, O., J. Phys. Chem. A 103, 5387 (1999).Google Scholar
[13] Ballone, P., Montanari, B. and Jones, R. O., J. Phys. Chem. A 104, 2793 (2000); P. Ballone and R. O. Jones, J. Phys. Chem. A 105, 3008 (2001).Google Scholar
[14] Early studies of the relation between polymerization and crystallization include: Oosawa, F., Asakura, S., Hotta, K., Imai, N., and Ooi, T., J. Polym. Sci. 37, 323 (1959); F. Oosawa, S. Asakura, and T. Ooi, Prog. Theor. Phys. Suppl. 17, 14 (1961).Google Scholar