Skip to main content Accessibility help

Combinatorial New Facing Targets Sputtering

  • Takuya Maetani (a1), Naoya Mori (a1), Yutaka Nakamitsu (a2) and Seiichi Hata (a3)


Combinatorial sputtering is one of the useful methods that can be used to search for optimal composition of alloy materials or for new alloy materials. To search materials more efficiently, it is required that compositions and their distribution on samples can be easily controlled for the evaluation of their properties. Moreover, it is desirable that compositions change linearly to search for novel materials systematically. In conventional combinatorial sputtering method, it is difficult to fabricate samples having linear compositions distribution without moving hard masks or rotating substrate.

In this paper, a novel combinatorial sputtering method with New Facing Targets Sputtering (Combi-NFTS) of material search is introduced. In this method, several sputtering targets are placed in opposite direction, and substrates are placed in vertical direction of these targets. From this structure, thin film with binary/ternary composition distribution could be synthesized onto one single substrate. Moreover, it can fabricate samples having relatively linear composition distribution without moving hard masks or rotating substrate. As an example, Cu, Zr and Ti pure targets were used to confirm the performance of Combi-NFTS. Binary system of Cu-Zr and ternary system of Cu-Zr-Ti thin films were fabricated by using Combi-NFTS. After deposition, compositions of the films were characterized by the energy dispersive X-ray spectroscopy. As a result of Cu-Zr binary system, the composition of the thin film was changed as the power of targets was changed. Moreover, composition distribution was expanded as the distance from substrate to targets was decreased. In the Cu-Zr-Ti ternary system, it was obtained similar trend for composition distribution. Moreover, the composition changed two dimensional by changing the substrate position.

These results indicate that combi-NFTS can easily control the composition and composition distribution of thin films by changing the power of targets or the distance from substrate to targets which make combi-NFTS very suitable for combinatorial materials search.



Hide All
1. Xiang, X.-D., Sun, X. –D., Briceho, G., Lou, Y., Wang, K.-A, Chang, H., Wallace Freedman, W. G., Chen, S.-W., Schultz, P. G., Science 268, 1738 (1995)
2. McFarland, E. W. and Weinberg, W. H., Tibtech March 17, 107 (1999)
3. Koinuma, H. and Takeuchi, I., Nat. Mater. 3, 429 (2004)
4. Hata, S., Yamauchi, R., Sakurai, J. and Shimokohbe, A., Jpn. J. Appl. Phys. 45, 2708 (2006)
5. Yamauchi, R., Hata, S., Sakurai, J. and Shimokohbe, A., Jpn. J. Appl. Phys. 45, 5911 (2006)
6. Takeuchi, I., van Dover, R. B. and Koinuma, H., MRS Bull. 27, 301 (2002)
7. Takahashi, R., Kubota, H., Murakami, M., Yamamoto, Y., Matsumoto, Y. and Koinuma, H., J. Comb. Chem. 6, 50 (2004)
8. Matsumoto, Y., Murakami, M., Jin, Z., Ohtomo, A., Lippmaa, M., Kawasaki, M. and Koinuma, H., Jpn. J. Appl. Phys. 38, 603 (1999)
9. Ludwig, A., Appl. Surf. Sci. 223, 78 (2004)



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed