Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T14:12:21.876Z Has data issue: false hasContentIssue false

Color Centers in Glass Optical Fiber Waveguides

Published online by Cambridge University Press:  25 February 2011

E. J. Friebele
Affiliation:
Naval Research Laboratory, Washington, DC 20375
D. L. Griscom
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

Color centers formed in the core and cladding of optical fiber waveguides by exposure to nuclear radiation can greatly increase the attenuation in the infrared spectral region of interest for optical communications. The radiation-induced paramagnetic defect centers in pure silica, silica doped with Ge, P, or B, and heavy metal fluoride glasses have been identified and thoroughly characterized by electron spin resonance (ESR) techniques. This paper will review the results of recent studies of color centers in optical fiber waveguide materials and their Identification via correlations of the radiation-induced optical absorptions and defect centers elucidated by ESR.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Friebele, E.J. and Griscom, D.L., Treatise on Materials Science and Technology Vol.17: Glass II, Tomozowa, M. and Doremus, R.H., Ed. (Academic Press, New York, 1979), pp. 257351.Google Scholar
2. Weeks, R.A. and Sonder, E., Paramagnetic Resonance 2 869 (1963).Google Scholar
3. Levy, P.W., J. Phys. Chem. Solids 13 287295 (1960).CrossRefGoogle Scholar
4. French, W.G., Jaeger, R.E., MacChesney, J.B., Nagel, S.R., Nassau, K. and Pearson, A.D., Optical Fiber Telecommunications, Miller, S.E. and Chynoweth, A.G., Ed. (Academic Press, New York, 1979), pp. 233262.CrossRefGoogle Scholar
5. Friebele, E.J., Askins, C.G., Gingerich, M.E., and Long, K.J., Nucl. Inst. Meth. in Phys. Res. B1 355369 (1984).CrossRefGoogle Scholar
6. Griscom, D.L. and Friebele, E.J., Rad. Effects 65 6372 (1982).CrossRefGoogle Scholar
7. Hayes, W., Kane, M.J., Salimen, O., Wood, R.L., and Doherty, S.P., J. Phys. C: Solid State 17 29432951 (1984).CrossRefGoogle Scholar
8. Smakula, A., Z. Phys. 59 603 (1930).Google Scholar
9. Marcuse, D., Principles of Optical Fiber Measurements (Academic Press, New York, 1981), pp. 226236.Google Scholar
10. Griscom, D.L., Friebele, E.J., Long, K.J. and Fleming, J.W., J. Appl. Phys. 54 37433762 (1983).Google Scholar
11. Nelson, K. Ciemiecki, Brownlow, D.L., Cohen, L.G., DiMarcello, F.V., Huff, R.G., Krause, J.T., Lemaire, P.J., Reed, W.A., Shenk, D.S., Sigety, E.A., Simpson, J.R., Tomita, A., and Walker, K.L., IEEE J. Lightwave Tech. LT–3 935941 (1985).CrossRefGoogle Scholar
12. Friebele, E.J., Griscom, D.L. and Sigel, G.H. Jr, J. AppI. Phys. 45 34243428 (1974).Google Scholar
13. Friebele, E.J., Long, K.J. and Griscom, D.L., Am. Ceram. Soc. Bull. 64 468 (1985).Google Scholar
14. Kawazoe, H., J. Non-Cryst. Solids 71 231243 (1985).Google Scholar
15. Isoya, J., Well, J.A., and Halliburton, L.E., J. Chem. Phys. 74 5436 (1981).CrossRefGoogle Scholar
16. Griscom, D.L. and Griscom, R.E., J. Chem. Phys. 47 27112722 (1967).CrossRefGoogle Scholar
17. Griscom, D.L., Friebele, E.J., and Sigel, G.H. Jr, Sol. State Commun. 15 479483 (1974).Google Scholar
18. Rush, J.D., Beales, K.J., Cooper, D.M., Duncan, J.W. and Rabone, N.H., British Telecom Technol. J. 4 (1984).Google Scholar
19. Araujo, R.J., Am. Ceram. Soc. Bull. 64 467 (1985).Google Scholar
20. Schreurs, J.V.H., unpublished work.Google Scholar
21. Nakahara, M., Digest, Conf. on Electrical Insulation and Dielectric Phenomena (IEEE, Piscataway, NJ, 1984), pp. 5358.Google Scholar
22. Friebele, E.J., Askins, C.G. and Gingerich, M.E., Appl. Opt. 23 42024208 (1984).Google Scholar
23. Schulte, H.J., Tech. Digest, Optical Fiber Communication and Optical Fiber Sensor Conf. 85, 1985, pp. 6264.Google Scholar
24. Tran, D.C., Sigel, G.H. Jr. and Bendow, B., IEEE J. Lightwave Tech. LT–2 566586 (1984).CrossRefGoogle Scholar
25. Fisanich, P.E., Halliburton, L.E., Feuerhelm, L.N., and Sibley, S.M., J. Non-Cryst. Solids 70 3744 (1985).CrossRefGoogle Scholar
26. Cases, R., Griscom, D.L. and Tran, D.C., J. Non-Cryst. Solids 72, 5163 (1985).Google Scholar
27. Friebele, E.J. and Tran, D.C., J. Non-Cryst. Solids 72 221232 (1985).Google Scholar
28. Tanimura, K., All, M., Feuerhelm, L.F., Sibley, S.M. and Sibley, W.A., J. Non-Cryst. Solids 70 397407 (1985).CrossRefGoogle Scholar
29. Griscom, D.L. and Tran, D.C., J. Non-Cryst. Solids 72 159163 (1985).Google Scholar
30. Friebele, E.J. and Tran, D.C., J. Am. Ceram. Soc. 68 C279 (1985).Google Scholar
31. Tanimura, K., Sibley, W.A., Suscavage, M. and Drexhage, M., J. Appl. Phys. 58 4544 (1985).CrossRefGoogle Scholar
32. Beaumont, J.H., Hayes, W., Kirk, D.L. and Summers, G.P., Proc. Roy. Soc. Lond. A315 6997 (1970).Google Scholar