Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T14:57:01.195Z Has data issue: false hasContentIssue false

Coarsening and Slope Selection During Crystal Growth and Etching of Ge(001)

Published online by Cambridge University Press:  21 February 2011

S. Jay Chey
Affiliation:
Department of Materials Science and Materials Research Laboratory, University of Illinois, Urbana, IL 61801.
Joseph E. Van Nostrand
Affiliation:
Department of Materials Science and Materials Research Laboratory, University of Illinois, Urbana, IL 61801.
David G. Cahill
Affiliation:
Department of Materials Science and Materials Research Laboratory, University of Illinois, Urbana, IL 61801.
Get access

Abstract

The evolution of surface morphology during low temperature crystal growth by molecular beam epitaxy and etching by low-energy ions is characterized by in-situ scanning tunneling microscopy. Epitaxial growth of Ge(001) at low temperatures in the vicinity of 155°C produces a pattern of growth mounds while etching at temperatures near 270°C produces a pattern of low aspect ratio pits. The characteristic in-plane length scale of the surface roughness d increase with a power law dependence on time but the exponent depends on temperature and process. Prior to the onset of amorphous growth, the amplitude of the surface roughness G1/2(d/2) increases more rapidly than d; i.e. the slope of the sides of the growth mounds increases with time. By contrast, the ratio of Gl/2(d/2) to d remains nearly constant during ion etching for a wide range of etching times.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Johnson, M. D., Orme, C., Hunt, A. W., Graff, D., Sudijono, J., Sander, L. M., and Orr, B. G., Phys. Rev. Lett. 72, 116 (1994).Google Scholar
2 Van Nostrand, Joseph E. et al. , Surf. Sci., in press.Google Scholar
3 Van Nostrand, Joseph E., Jay Chey, S., Hasan, M.-A., Cahill, David G., and Greene, J. E., Phys. Rev. Lett. 74, 1127 (1995).Google Scholar
4 Lee, N.-E., Cahill, David G., and Greene, J. E., unpublished.Google Scholar
5 Stroscio, Joseph A., Pierce, D. T., Stiles, M., Zangwill, A., and Sander, L. M., Phys. Rev. Lett., in press.Google Scholar
6 Ernst, H.-J., Fabre, F., Folkerts, R., and Lapujoulade, J., Phys. Rev. Lett. 72, 112 (1994).Google Scholar
7 Tsui, Frank, Wellman, Joanne, Uher, Ctirad, and Clark, Roy, these proceedings.Google Scholar
8 Ehrlich, Gert and Hudda, F. G., J. Chem. Phys. 44, 1039 (1966).Google Scholar
9 Villain, J., J. Phys. I 1, 19 (1991).Google Scholar
10 Michely, Thomas and Comsa, George, Nuc. Instr. Methods B 82, 207 (1993).Google Scholar
11 Michely, Thomas, Land, Terry, Littmark, Uffe, and Comsa, George, Surf. Sci. 272, 204 (1992).Google Scholar
12 Chey, S.-Jay, Nostrand, Joseph E. Van, and Cahill, David G., Phys. Rev. B, in press.Google Scholar
13 Nostrand, Joseph E. Van, Chey, S. Jay, and Cahill, David G., J. Vac. Sci. Technol. A 13, 1816 (1995). Note that in this publication, we made an error in measuring the growth temperature of the 200 nm thick film. The correct growth temperature for the 200 nm film is 175°C.Google Scholar
14 Zhang, X.-J., Xue, G., Agarwal, A., Tsu, R., Hasan, M.-A., Greene, J. E., and Rockett, A., J. Vac. Sci. Technol. A 11, 2553 (1993).Google Scholar
15 Lapujoulade, Jean, Surface Science Reports 20, 191 (1994).Google Scholar
16 Chason, E., Mayer, T. M., Kellerman, B. K., Mcllroy, D. T., and Howard, A. J., Phys. Rev. Lett. 72, 3040 (1994).Google Scholar
17 We typically find that the peak θ in the distribution of local slopes, see Ref. [3], can be approximated by θ ≃ 6G 1/2/d. Google Scholar
18 Jorke, H., Herzog, H.-J., and Kibbel, H., Phys. Rev. B 40, 2005 (1989).Google Scholar
19 Eaglesham, D. J., Grossmann, H.-J., and Cerullo, M., Phys. Rev. Lett. 65, 1227 (1990).Google Scholar
20 Eaglesham, D. J., J. Appl. Phys. 77, 3597 (1995).Google Scholar
21 Xue, G., Xiao, H. Z., Hasan, M.-A., Greene, J. E., and Birnbaum, H. K., J. Appl. Phys. 74, 2512 (1994).Google Scholar
22 Siegert, Martin and Plischke, Michael, Phys. Rev. Lett. 73, 1517 (1994).Google Scholar