Skip to main content Accessibility help

CNTFET Gas Sensors Using SWCNT Mats: Method for Low-cost Fabrication, Solution to Improve Selectivity, Experimental Results using Interfering Agents


The first paper showing the great potentiality of Carbon Nanotubes Field Effect transistors (CNTFETs) for gas sensing applications was published in 2000 [1]. It has been demonstrated that the performances of this kind of sensors are extremely interesting: a sensitivity of around 100ppt (e.g. for NO2 [2]) has been achieved in 2003 and several techniques to improve selectivity have been tested with very promising results [2]. The main issues that have not allowed, up to now, these devices to strike more largely the market of sensors, have been the lack of an industrial method to obtain low-cost devices, a demonstration of their selectivity in relevant environments and finally a deeper study on the effect of humidity and the possible solutions to reduce it. This contribution deals with CNTFETs based sensors fabricated using air-brush technique deposition on large surfaces. Compared to our last contribution [3], we have optimized the air-brush technique in order to obtain high performances transistors (Log(Ion)/Log(Ioff) ∼ 5/6) with highly reproducible characteristics : this is a key point for the industrial exploitation. We have developed a machine which allows us the dynamic deposition on heated substrates of the SWCNT solutions, improving dramatically the uniformity of the SWCNT mats. We have performed tests using different solvents that could be adapted as a function of the substrates (e.g. flexible substrates). Moreover these transistors have been achieved using different metal electrodes (patented approach [4]) in order to improve selectivity. Results of tests using NO2, NH3 with concentrations between ∼ 1ppm and 10ppm will be shown during the meeting.



Hide All
1. Ijima, S., Nature 354, pp. 5658, 1991
2.PAvouris, h., Chen, Z. and Perebeinos, V., Nature Nanotechnology 2, pp. 605615, (2007)
3. Collins, P.G., Hersam, M., Arnold, M., Martel, R. & Avouris, P., Phys. Rev. Lett. 86, pp. 31283131, (2001)
4. Kim, P., Sh, L. Majumdar, i. A., McEuen, P. L., Phys.Rev.Lett. 87, p. 215502, (2001)
5. Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K., Ikuta, T., Abe, H., Shimizu, T., Appl. Phys. A A74, pp. 339343, (2002)
6. Hone, J., Llaguno, M. C., Biercuk, M. J., Johnson, A. T., Batlogg, B., Benes, Z., Fischer, J. E., Appl.Phys. A 74, no 3, pp. 339343, (2002)
7. Ruoff, R. S., Qian, D., Liu, W. Kam, C. R. Physique 4, pp. 9931008, (2003)
8. Heer, W. A. de, Chatelain, A., and Urgate, D., Science 270, pp. 11791180, (1995)
9. Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., and Dai, H., Science 283, pp. 512514 (1999)
10. Teo, K., JOM 59, pp. 2932, (2007)
11. Kim, Y. C. and Yoo, E. H., Jpn. J. Appl. Phys., 44, pp. L454–L456, (2005)
12. Sugie, H., Tanemura, M., Filip, V., Iwata, K., Takahashi, K., and Okuyama, F., Appl. Phys. Lett, 78, pp. 25782580, (2001)
13. Prasher, R., Proceedings of the IEEE 94, pp. 15711586, (2006)
14. Qian, D., Wagner, G. J., Liu, W. K., Yu, M-F., Ruoff, R. S., Appl. Mech. Rev. 55, pp. 495532, (2002)
15. Appenzeller, J., Knoch, J., Martel, R., Derycke, V., Wind, S. J., IEEE transactions on nanotechnology 1, pp. 184189, (2002)
16. Dai, H., Surface Science 500, pp. 218241, (2002)
17. Sinha, N., Ma, J., Yeow, J. T. W., J.Nanoscience and Nanotechnology 6, pp. 573590, (2006)
18. Chen, R. J., Choi, H. C., Bangsaruntip, S., Yenilmez, E., Tang, X., Wang, Q., Chang, Y-L., Dai, H., J. Am. Chem. Soc. 26, pp.15631568, (2004)
19. Chen, R.J., Bangsaruntip, S., Drouvalakis, K. A., Kam, N. W. S., Shim, M., Li, Y., Kim, W., Utz, P. J. and Dai, H., PNAS 100, pp.49844989, (2003)
20. Koratkar, N., Ajayna, P., Modi, A., Lass, E., Patent WO/2004/059298
21. Goldoni, A., Petaccia, L., Lizzit, S. and Larciprete, R., J. Am. Chem. Soc., 125 pp 1132911333, (2003)
22. Ueda, T., Norimatsu, H., Md. Bhuiyan, M. H., Ikegami, T. and Ebihara, K., Jpn. J. Appl. Phys 45, pp. 83938397, (2006)
23. Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J. and Meyyappan, M., Carbon Nanotube Sensors for Gas and Organic Vapor Detection, Nanoletters 3, 929933, (2003)
24. Valentini, L., Armetano, I., Kenny, J. H., Cantalini, C., Lozzi, L., Santucci, S., Appl.Phys.Lett. 82, pp. 961963, (2003)
25. Saito, R., Dresselhaus, G., Dressealhaus, M. S., Physical properties of carbon nanotubes, ed. Imperial college press, 259 (2003)
26. Kong, J., Franklin, N., Chou, C., Pan, S., Cho, K. J. and Dai, H., Science 287, pp. 622625, (2000).
27. Bondavalli, P., Legagneux, P., Pribat, D., Sensors and Actuators B V.140, pp 304318, (2009)
28. Bondavalli, P., Legagneux, P., Pribat, D., Mat. Res. Society Proc. 1081, P14–02, (2008)
29. Bondavalli, P., Legagneux, P., Pribat, D., Patent WO/2006/128828


Related content

Powered by UNSILO

CNTFET Gas Sensors Using SWCNT Mats: Method for Low-cost Fabrication, Solution to Improve Selectivity, Experimental Results using Interfering Agents


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.