Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T02:05:12.065Z Has data issue: false hasContentIssue false

Cluster-Tool Integrated HF Vapor Etching for Native Oxide Free Processing

Published online by Cambridge University Press:  21 February 2011

Chris Werkhoven
Affiliation:
ASM International, Rembrandtlaan 2A, 3723 BJ Bilthoven, The Netherlands
Ernst Granneman
Affiliation:
ASM International, Rembrandtlaan 2A, 3723 BJ Bilthoven, The Netherlands
Loek Kwakman
Affiliation:
ASM International, Rembrandtlaan 2A, 3723 BJ Bilthoven, The Netherlands
Menso Hendriks
Affiliation:
IMEC v.z.w., Kapeldreef 75, B-3001, Leuven, Belgium
Steven Verhaverbeke
Affiliation:
IMEC v.z.w., Kapeldreef 75, B-3001, Leuven, Belgium
Marc Heyns
Affiliation:
IMEC v.z.w., Kapeldreef 75, B-3001, Leuven, Belgium
Hugo Bender
Affiliation:
IMEC v.z.w., Kapeldreef 75, B-3001, Leuven, Belgium
Get access

Abstract

Three regimes of HF-H2O vapor etching of oxide can be distinguished, viz. a gas phase, an adsorption and a condensation regime with gas phase etching behaving distinctily different in terms of etch rate and surface passivation properties. Integration of a vapor etch process in a vacuum-controlled, leak-tight cluster tool equipped with vertical reactor LPCVD and oxidation modules offers important thin film interface engineering capabilities; significant process control improvement is achievable in critical device technologies, such as formation of poly-contacts, poly-emitters and NO capacitors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takahagi, T., Nagai, I, Ishitani, A., and Kuroda, H., and Nagasawa, Y., J. Appl. Phys. 64 (7), 3516 (1988).CrossRefGoogle Scholar
2. Hirayama, H. and Tatsumi, T., Appl. Phys. Lett. 54, 1561 (1989).Google Scholar
3. Walczyk, F., Lage, C., Kanshik, V. and Blackwell, M., Proceedings of the Bipolar Circuits and Technology Meeting, Minneapolis, 1992, p.84.Google Scholar
4. Werkhoven, C.J., Westendorp, J.E.M., Huussen, F. and Granneman, E.H.A., Semiconductor Int., May 1991, p. 228.Google Scholar
5. Yoshimaru, M., Inoue, N., Itoh, M., Kurogi, H., Tamura, H., Hirasita, N., Ichikawa, F. and Ino, M., Proceedings of the Interantional Electron Devices Meeting, San Francisco, 1992, p. 271.Google Scholar
6. Helms, C.R. and Deal, B.E., IES, J., May/June 1992, p. 21.Google Scholar
7. Chabal, Y.J., Higashi, G.S., and Raghavachari, K., J. Vac. Sci. Technol. A 7 (3), 2104 (1989).Google Scholar
8. Ermolieff, E., Martin, F., Amouroux, A., Marthon, S., and Westendorp, J.F.M., Semicond. Sci. Technol. 6, 98 (1991).CrossRefGoogle Scholar
9. Ubara, H., Imura, J., and Hiraki, A., Solid State Comm. 50, 673 (1984).CrossRefGoogle Scholar
10. Wilson, M.C., Ashburn, P., Soerowirdjo, B., Booker, G.R., and Ward, P., J. Phys. (Paris) Colloq. 43, Suppl.10, CI-253 (1983).Google Scholar