Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T10:29:09.126Z Has data issue: false hasContentIssue false

Cluster Formation in Laser-Induced Ablation and Evaporation of Solids Observed by Laser Ionization Time-Offlight Mass-Spectrometry and Scanning Tunneling Microscopy

Published online by Cambridge University Press:  16 February 2011

R. J. Tench
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
M. Balooch
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
L. Bernardez
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Mike J. Allen
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
W. J. Siekhaus
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
D. R. Olander
Affiliation:
University of California at Berkeley, Berkeley, CA 94720
W. Wang
Affiliation:
University of California at Berkeley, Berkeley, CA 94720
Get access

Abstract

Laser ionization time-of-flight mass analysis (LIMA) used pulses (5ns) of a frequency- quadrupled Nd-YAG laser (266 nm) focused onto spots of 4–100 μm diameter to ablate material, and a reflectron time of flight tube to mass-analyze the plume. The observed mass spectra for Si, Pt, SiC, and UO2 varied in the distribution of ablation products among atoms, molecules and clusters, depending on laser power density and target material.

Cleaved surfaces of highly oriented pyrolytic graphite (HOPG) positioned at room temperature either 10 cm away from materials ablated at 10−5 Torr by 1–3 excimer laser (308 nm) pulses of 20 ns duration or 1 m away from materials vaporized at 10−8 Torr by 10 Nd-Glass laser pulses of 1 ms duration were analyzed by Scanning Tunneling Microscopy (STM) in air with Ångstrom resolution. Clusters up to 30 Å in diameter were observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Venkatesen, T., Wu, X. D., Inam, A., and Wachtman, J. B., Appl. Phys. Lett., 52, 1193 (1988) and M. Balooch, D. R. Olander and R. E. Russo, Appl. Phys. Lett., 55, 197, (1989).Google Scholar
2 Balooch, M., Tench, R. J., Siekhaus, W. J., Allen, M. J., Connor, A. L. and Olander, D. R., To be Published.Google Scholar
3 Olander, D. R., Pure & Appl. Chem., 62, 123, (1990).Google Scholar
4 Dijkkam, D., Venkatesan, T., Wu, X. D., Shaheen, S. A., Jisrawi, N., Min-Lee, Y. H., Mclean, W. L. and Croft, M., Appl. Phys. Lett. 51, 619, (1987).Google Scholar
5 Dijkkam, D., Venkatesan, T., Wu, X. D., Shaheen, S. A., Jisrawi, N., Min-Lee, Y. H., Mclean, W. L. and Croft, M., Appl. Phys. Lett. 51, 619, (1987).Google Scholar
6 J.W., Lyding, S., Skala, J.S., Hubacek., Brockenbrough, R., and Gammie, G., J. of Microscopy, 152, pt. 2, 371378, (1988).Google Scholar
7 Nanoscope II, Digital Instruments, Santa Barbara.Google Scholar
8 Yagnik, S. K., Olander, D.R., J. Nucl. Mat., 154, 253, (1988).Google Scholar