Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T20:57:58.538Z Has data issue: false hasContentIssue false

Chromium Distribution in CoCrTa/Cr Longitudinal Recording Media

Published online by Cambridge University Press:  10 February 2011

J.E. Wittig
Affiliation:
Vanderbilt University, Nashville TN 37235
T.P. Nolan
Affiliation:
Komag Inc., 1704 Automation Parkway, San Jose CA 95131
R. Sinclair
Affiliation:
Stanford University, Palo Alto CA 94305
J. Bentley
Affiliation:
ORNL, Oak Ridge TN 37831
Get access

Abstract

The current study of CoCr12Ta4/Cr longitudinal recording media combines high resolution electron microscopy (HRTEM) with nanoprobe energy dispersive spectroscopy (EDS) and energy-filtered imaging (EFTEM) to correlate the Cr distribution with specific microstructural features. EFTEM images show Cr enrichment at grain boundaries, both random angle boundaries and 90° bicrystal boundaries. Cr segregation within grains is also observed in the elemental maps. This intragrain segregation often occurs at a series of defects that may define separately nucleated grains having 00 misorientation. Nanoprobe EDS measurements indicate that these defects contain localized concentrations of 25 to 30 % Cr. The random angle grain boundary Cr concentration occurs with a wide range, 19 to 36 at% (mean 22%) whereas the more crystallographically related 900 boundaries contain less Cr with less variation, 15 to 21 at% (mean 17% Cr). Composition profiles across grain boundaries using both nanoprobe EDS and EFTEM images show the full-width-half-maximum of the segregation to be approximately 4 nm, with Cr depleted regions next to the grain boundary having less than 7 at% Cr. The Ta concentration revealed no statistical evidence of segregation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bentley Proc, J.. Microscopy and Microanalysis, 533 (1997).Google Scholar
2. Kim, M. R., Guruswamy, S. and Johnson, K. E., IEEE Trans. Magn, 29, 3673 (1993).Google Scholar
3. Yahisa, Y., Kimoto, K., Usami, K., Matsuda, Y., Inagaki, J., Furusawa, K. and Narishige, S., IEEE Trans. Magn 31, 2836 (1995).Google Scholar
4. Kimoto, K., Hirayama, Y., and Futamoto, M., J. Magn. Magn. Mater. 159, 401 (1996).Google Scholar
5. Tang, K., Schabes, M. E., Ross, C. A., He, L., Ranjan, R., Yamashita, T. and Sinclair, R., IEEE Trans. Magn. 33 4074 (1997).Google Scholar
6. Inaba, N., Yamamoto, T., Hosoe, Y. and Futamoto, M., J. Magn. Magn. Mater. 168, 222 (1997).Google Scholar
7. Wittig, J. E., Nolan, T. P., Ross, C. A., Schabes, M. E., Tang, K., Sinclair, R. and Bentley, J., IEEE Trans. Magn., in press.Google Scholar
8. Futamoto, M., Inaba, N., Hirayama, Y., Ito, K. and Honda, Y., Mat. Res. Soc. Proc., this proceedings.Google Scholar
9. Takahashi, M, Kikuchi, A. and Kawakita, S., IEEE Trans. Magn. 33 2938 (1997).Google Scholar
10. Nolan, T. P., Hara, M., Yoshida, K. and Futamoto, M., J. Appl. Phys., 81, 3922 (1997).Google Scholar
11. Bentley, J., Wittig, J. E. and Nolan, T. P., Mat. Res. Soc. Proc., this proceedings.Google Scholar
12. Nolan, T. P., Sinclair, R., Ranjan, R., and Yamashita, T., J. Appl. Phys., 73, 5566 (1993).Google Scholar