Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T12:04:18.002Z Has data issue: false hasContentIssue false

Chemistry Of Solid/Solid Interfaces

Published online by Cambridge University Press:  15 February 2011

R. L. Opila*
Affiliation:
AT&T Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

The chemistry that occurs at buried interfaces often determines the performance and reliability of multi-chip modules (MCM's). For example, chemical reactions between sputter deposited metals and polymers may ultimately determine the interlayer adhesion of multilevel metallizations for MCM's. Both destructive and non-destructive probes can used to study these interfaces, and the interfaces may be studied as they are formed or as they age. Complicating the interpretation of any of the results of these techniques is the inherent complexity of the chemistry and, often, the non-planarity of the interface. Several examples of complex interfaces will be described along with strategies for elucidating the chemistry and their reliability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ozawa, T., Sorimachi, H., Izumi, K., and Yoneda, Y., ISHM 1991 Proceedings, p. 6 (1991).Google Scholar
2. Ho, P. S., Hahn, P. O., Bartha, J. W., Rubloff, G. W., Legoues, F. K., and Silverman, B. D., J. Vac. Sci. Technol. A., 3, 739 (1985).CrossRefGoogle Scholar
3. Haight, R., White, R. C., Silverman, B. D., and Ho, P. S., J. Vac. Sci. Technol. A, 6, 2188 (1988).Google Scholar
4. Bartha, J. W., Hahn, P. O., Legoues, F., and Ho, P. S., J. Vac. Sci. Technol. A, 3, 1390 (1985).CrossRefGoogle Scholar
5. Hahn, P. O., Rubloff, G. W., Bartha, J. W., Legoues, F., Tromp, R., Ho, P. S., Mat. Res. Soc. Symp. Proc., 40, Materials Research Society, p 251 (1985).Google Scholar
6. Hahn, P. O., Rubloff, G. W., and Ho, P. S., J. Vac. Sci. Technol. A, 2, 756 (1984).CrossRefGoogle Scholar
7. Tromp, R. M., Legoues, F., and Ho, P. S., J. Vac. Sci. Technol. A, 3, 782 (1985).CrossRefGoogle Scholar
8. Silverman, B. D., Sanda, P. N., and Ho, P. S., J. Polym. Sci., 23, 2857 (1985).Google Scholar
9. Burkstrand, James M., J. Vac. Sci. Technol. 16, 363 (1979).CrossRefGoogle Scholar
10. Burkstrand, James M., J. Appl. Phys., 52, 4795 (1981).Google Scholar
11. Shuichi, Hashimoto, Appl. Surf. Sci., 47, 323 (1991).Google Scholar
12. Nuzzo, R. G., Wong, Y.-H., and Schwartz, G. P., Langmuir, 3, 1136 (1987).Google Scholar
13. Bachman, B. J. and Vasile, M. J., J. Vac. Sci. Technol. A, 7, 2709, (1989).CrossRefGoogle Scholar
14. Sengupta, K. S. and Birnbaum, H. K., J. Vac. Sci. Technol., A 9, 2928 (1991).CrossRefGoogle Scholar
15. Bain, C. D., Davies, P. B., Ong, T. H., Ward, R. N., and Ward, M. A., Surf. Interface. Anal., 17, 529 (1991).Google Scholar
16. Boerio, F. J., Hong, P. P., Tsai, H. W., and Young, J. T., Surf. Interface Anal., 17, 448 (1991).Google Scholar
17. Opila, R. L. and Worlock, J. M., J. Electrochem. Soc., 133, 974 (1986).Google Scholar
18. Vertes, A., Czako-Nagy, I., Deck, P., and Leidheiser, H. J., J. Electrochem. Soc., 134, 1628 (1987).Google Scholar
19. Tourillon, G., Guay, D., Fontaine, A., Garrett, R., and Williams, G. P., Faraday Discuss. Chem. Soc., 89, 275 (1990).CrossRefGoogle Scholar
20. McIntyre, J. F. and Leidheiser, H. J. Jr., J. Electrochem. Soc., 133, 43 (1986).CrossRefGoogle Scholar
21. Industrial Applications of Surface Analysis, Powell, C. J., eds, ACS Symposium Series, Vol 199, American Chemical Society, Washington, D. C., 1982.Google Scholar
22. Opila, R. L., MaSaitis, R. L., Ibidunni, A. O., Taylor, J. A., Davenport, A. J., and Isaacs, H. S., Surf. Interface Anal., to be published.Google Scholar
23. Hanson, K. J. and Greene, M. E., unpublished results, and Davenport, A. J., unpublished results.Google Scholar