Skip to main content Accessibility help
×
Home

The Chemistry of GaN Growth

  • T.F. Kuech (a1), Shulin Gu (a1), Ramchandra Wate (a1), Ling Zhang (a1), Jingxi Sun (a1), J.A. Dumesic (a1) and J.M. Redwing (a2)...

Abstract

The development of new chemically based growth techniques has opened the range of possible GaN applications. This paper reviews some of the challenges in the chemically based growth of GaN and related materials. Ammonothermal-based growth, hydride vapor phase epitaxy and metal organic vapor phase epitaxy (MOVPE) are chemically complex systems wherein the underlying mechanisms of growth are not well understood at present. All these systems require substantial experimental and theoretical efforts to determine the nature and kinetics of GaN growth. In the case of metal organic vapor phase epitaxy, the application of computational techniques based on density functional theory have augmented the more conventional experimental approaches to determining the growth chemistry. These chemical reaction schemes, when combined with computational thermal-fluid models of the reactor environment, provide the opportunity to predict growth rates, uniformity and eve ntually materials properties.

Copyright

References

Hide All
1. Ballman, A.A. and Laudise, R.A., “Hydrothermal Growth,” in The Art and Science of Growing Crystals, ed. Gilman, J.J. (John Wiley & Sons, New York 1963).
2. Porowski, S. and Grzegory, I., Properties of Group III nitrides, 11, (1994) 76.
3. Lo, I.H. and Stringfellow, G.B., Appl. Phys. Lett. 69, 2701 (1996).
4. Peters, D., J. Cryst. Growth 104, 411 (1990).
5. Dwilinski, R., Doradzinski, R., Garczynski, J., Sierzputowski, L., Baranowski, J.M., Kaminska, M., Diamond and Rel. Mater. 7, 1348 (1998).
6. Dwilinski, R., Wysmolek, A., Baranowski, J., Kaminska, M., Doradzinski, R., Garczynski, J., Sierzputowski, L., and Jacobs, H., Acta Phys. Polon. A 88, 833 (1995).
7. Purdy, A.P., Chem. Mater. 11 1648 (1999).
8. Jegier, J.A., McKernan, S., Purdy, A.P., and Gladfelter, W.L., Chem. Mater. 12, 1003 (2000).
9. Byrappa, K., “Hydrothermal Growth of Crystals,” in Handbook of Crystal Growth, ed. Hurle, D.T.J. (North Holland, Amsterdam, 1994) Vol.2, Chapter 9.
10. Mutaftschiev, B., “Nucleation Theory”, in Handbook of Crystal Growth, ed. Hurle, D.T.J. (North Holland, Amsterdam, 1994) Vol.1, Chapter 4.
11. Keller, S., Keller, B. P., Wu, Y. F., Heying, B., Kapolnek, D., Speck, J. S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett., 68(11) 1525 (1996).
12. Molnar, R. J., Nichols, K. B., Maki, P., Brown, E. R., and Melngailis, I., Mater. Res. Soc. Symp. Proc., 378, 479 (1995).
13. Akasaki, I., and Amano, H., J. Crystal Growth, 163, 86 (1996).
14. Monlar, R. J., Gotz, W., Romano, L. T., and Johnson, J. M., J. Crystal Growth, 178, 147 (1997).
15. Gu, Shulin, Zhang, Rong, Sun, Jingxi, Zhang, Ling, and Kuech, T. F., Appl. Phys. Lett. 76 (2000) 3454.
16. Hashimoto, T., Terakoshi, Y., Ishida, M., Yuri, M., Imafuli, O., Sugino, T., Yoshikawa, A., Itoh, K., J. Crystal Growth 189–190 (1998) 254.
17. Fuke, S., Teshigawara, H., Kuwahara, K., Takano, Y., Ito, T., Yanagihara, M., Ohtauka, K., J. Appl. Phys. 83 (1998) 764.
18. Nakamura, S., Jap. J. Appl. Phy. Part 2 30, (1991) L1705.
19.For an example of typical growth conditions see, Zhang, R. and Kuech, T.F., Appl. Phys. Lett. 72, 1611 (1997).
20. Safvi, S.A., Redwing, J.M., Tischler, M.A., Kuech, T.F., J. Electrochem. Soc. 144 (1997) 1789.
21. Coates, G.E., J. Chem. Soc. part III (1951) 1943.
22. Zaouk, A., Salvetat, E., Sakaya, J., Maury, F., and Constant, G., J. Crystal Growth 55 (1981) 135.
23. Mazzarese, D., Tripathi, A., Conner, W. C., Jones, K. A., Calderon, L., and Eckart, W., J. Electron. Mater. 18 (1989) 369.
24. Sywe, B. S., Schlup, J. R., and Edgar, J. H., Chem. Mater. 3 (1991) 737.
25. Almond, M. J., Jenkins, C. E., Rice, D. A., and Hagen, K., J. Organomet. Chem. 439 (1992) 251.
26. Thon, A. and Kuech, T.F., Appl. Phys. Lett. 69 (1996) 56.
27. Saito, H., Makimoto, T., and Kobayashi, N., J. Crystal Growth 195 (1998) 416.
28. Ougazzaden, A., Rao, E., Sermage, B., Leprince, L., and Gauneau, M., Jap. J. Appl. Phys. 38 (1999) 1019.
29. Thon, A., Saulys, D., Safvi, S.A., Gaines, D.F., and Kuech, T.F., J. Electrochem. Soc. 144 (1997) 1127.
30. Wate, R. M., Dumesic, J. A., and Kuech, T. F., J. Crystal Growth, 221 (2001) 751
31. Sun, J., Redwing, J.M., Kuech, T.F., Physica Status Solidi A. 176 (1999) 693.
32. Sun, J., Redwing, J.M., Kuech, T.F., Wide-Bandgap Semiconductors for High-Power, High-Frequency and High-Temperature Applications, (Symposium. Mater. Res. Soc, Warrendale, PA, 1999) 463.

Related content

Powered by UNSILO

The Chemistry of GaN Growth

  • T.F. Kuech (a1), Shulin Gu (a1), Ramchandra Wate (a1), Ling Zhang (a1), Jingxi Sun (a1), J.A. Dumesic (a1) and J.M. Redwing (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.