Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T02:31:43.468Z Has data issue: false hasContentIssue false

Chemistry and Optical Properties of Small Metal Particles in Aqueous Solution

Published online by Cambridge University Press:  15 February 2011

Arnim Henglein*
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Bereich S, 1000 Berlin 39, FRG.
Get access

Abstract

Metal particles in aqueous solution can be surface-modified by chemisorbed molecules and/or by a second deposited metal. The electron density in the metal particles is varied by controlled electron transfer from free radicals.’ These modifications lead to significant electronic changes in the metal particles, the result being changes in the optical properties and in chemical reactivity.

The physicochemical properties also change during the transition from the atomic to the metallic state with increasing particle size. In the case of silver, oligomeric non-metallic clusters can be stabilized in solution for days, time enough to study many of their properties. In other cases (Au, Cu, Pb), the clusters are short-lived; they are investigated by fast kinetic methods such as pulse radiolysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE

1. Doremus, R.H., J.Chem.Phys. 42, 414 (1965)Google Scholar
2. Henglein, A., Mulvaney, P., and Linnert, T., J.Chem.Soc. Faraday Disc. 92 31 (1991)Google Scholar
3. Henglein, A., Mulvaney, P., Linnert, T., and Holzwarth, A., J.Phys.Chem. 96 2411(1992)Google Scholar
4. Henglein, A., Mulvaney, P., Holzwarth, A., Sosebee, T.E., and Fojtik, A., Ber.Bunsenges.Phys.Chem. in pressGoogle Scholar
5. Henglein, A., J.Phys.Chem. 83, 2209 (1979)Google Scholar
6. Henglein, A., J.Phys.Chem. 83, 2858 (1979)Google Scholar
7. Henglein, A., J.Phys.Chem. 84, 3461 (1980)Google Scholar
8. Henglein, A., Ber.Bunsenges.Phys.Chem. 84. 253 (1980)Google Scholar
9. Henglein, A. and Lilie, J., J.Am.Chem.Soc. 103, 1059 (1981)Google Scholar
10. Henglein, A., Linnert, T., and Mulvaney, P., Ber.Bunsenges.Phys.Chem. 94 1449 (1990)Google Scholar
11. Mulvaney, P., Linnert, T., and Henglein, A., J.Phys.Chem. 95 7843 (1991)Google Scholar
12. Barker, G.C., Gardner, A.W., and Sammon, D.C., J.Electrochem.Soc. 113 1182 (1966)Google Scholar
13. Brodsky, A.M. and Pleskov, Y.V., Progress in Surface Science 2 part 1, 1972 Google Scholar
14. Sass, J.K., Sen, R.K., Meyer, E., and Gerischer, H., Surf.Sci. 44, 515 (1974)Google Scholar
15. Linnert, T., Mulvaney, P., and Henglein, A., Ber.Bunsenges.Phys.Chem. 95 838 (1991)Google Scholar
16. Michaelis, M. and Henglein, A., J.Phys.Chem. in pressGoogle Scholar
17. Henglein, A., Chem.Phys.Lett. 154, 473 (1989)Google Scholar
18. Linnert, T., Mulvaney, P., Henglein, A., and Weller, H., J.Am.Chem.Soc. 112, 4657 (1990)Google Scholar
19. Henglein, A., Ber.Bunsenges.Phys.Chem. 94 600 (1990)Google Scholar
20. Henglein, A. and Tausch-Treml, R., J. Colloid and Interface Sci. 80 84 (1981)Google Scholar
21. Mulvaney, P. and Henglein, A., Chem.Phys.Lett. 168, 391 (1990)Google Scholar
22. Mosseri, S., Henglein, A., and Janata, E., J.Phys.Chem. 93, 6791 (1989)Google Scholar
23. Ershov, B.G., Ejanata, , Michaelis, M., and Henglein, A., J.Phys.Chem. 95, 8996 (1991)Google Scholar
24. Henglein, A., Janata, E., and Fojtik, A., J.Phys.Chem., in pressGoogle Scholar
25. Bréchignac, C., Cahuzac, Ph., Carlier, F., and Leygnier, J., J.Chem.Phys.Lett. 164 433 (1989)Google Scholar
26. Fallgren, H. and Martin, T.P., Chem.Phys.Lett. 168 233 (1990)Google Scholar
27. Wang, C.R.C., Pollack, S., and Kappes, M.M., Chem.Phys.Lett. 166, 26 (1990)Google Scholar
28. Selby, K., Kresin, V., Masui, J., Vollmer, M., Scheidemann, A., and Knight, W.D., Z.Phys. D, 19 43 (1991)Google Scholar