Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-21T06:11:54.259Z Has data issue: false hasContentIssue false

Chemical Widths at Composite Interfaces: Relationships to Structural Widths and Methods for Measurement

Published online by Cambridge University Press:  15 February 2011

R.W. Carpenter
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704
J.S. Bow
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704
M.J. Kim
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704
K. Das Chowdhiury
Affiliation:
Department of Materials Science and Engineering, MIT, Cambridge, MA 02139
W. Braue
Affiliation:
Geman Aerospace Research Establishment, Mat'ls. Res. Inst., D-51147 Cologne, Germany
Get access

Abstract

Energy selected imaging with a Zeiss 912 ω-filter TEM was used to examine grain boundary solute distributions in an Si3N4/SiC(w) ceramic densified with Y2O3 + Al2O3 sintering aid. These results are compared to boundary region solute distributions in the same materials determined by field emission small probe electron energy loss spectroscopy and related methods. The intrinsic higher incident flux of the FEG small probe methods renders them the most useful for high spatial resolution local chemical width measurement. Energy selected imaging is fast and relatively simple for determining elemental distributions in boundaries at low magnifications. The methods are complementary.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Clarke, D. R., Zaluzec, N. J., and Carpenter, R. W., J. Am. Ceram. Soc., 64, 601 (1981).Google Scholar
[2] Braue, W., Carpenter, R. W., and Smith, David J., J. Mat. Sci., 25, 2949 (1990).Google Scholar
[3] Raj, Rishi, J. Am. Ceram. Soc., 76, 2147 (1993).Google Scholar
[4] Chowdhury, K. Das, Carpenter, R. W., and Braue, W., Ultramicros. 40, 229 (1992)Google Scholar
[5] Chowdhury, K. Das, Carpenter, R. W., Braue, W., Liu, J., and Ma, H., J. Am. Ceram. Soc., (1994) in press.Google Scholar
[6] Liu, J., Chowdhury, K. Das, Carpenter, R. W., and Braue, W. in Silicon Nitride Ceramics-Scientific and Technological Advances, ed. by Chen, I.-W., Becher, P. F., Mifonio, M., Petzow, E., and Yen, T.-S. (Mater. Res. Soc., 287, Pittsburgh, PA, 1993) pp. 329334.Google Scholar
[7] Carpenter, R. W., Mater. Sci. and Eng., A107, 207 (1989).Google Scholar
[8] Joy, D. and Maher, D., in Scanning Electron Microscopy 1977/1, ed. by Johair, O. (IIT Res. Inst. Chicago)pp. 325334.Google Scholar
[9] Isaacson, M. and Johnson, D., Ultramicros. 1, 33 (1975).Google Scholar
[10] Berger, A., Mayer, J., and Kohl, H., Ultramicros. 55, 101 (1994)Google Scholar
[11] Chowdhury, K. Das, Carpenter, R. W., and Kim, M. J., in Microscopy: The Key Research Tool, ed. by Lyman, C., Peachey, L., and Fisher, R. (Electron Microscopy Society of America, Woods Hole, MA 1992) pp.6166.Google Scholar
[12] Chowdhury, K. Das, Carpenter, R. W., and Weiss, J. K., Proc. 471h Ann. Mtg. Elec. Micros. Soc. Amer., ed. by Bailey, G. W. (San Francisco Press, San Francisco) 428 (1989).Google Scholar