Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T10:04:02.273Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition of Beta Silicon Carbide Epilayers Using the Single Source Precursor 1,2-Disilylethane

Published online by Cambridge University Press:  22 February 2011

J. D. Parsons
Affiliation:
Department of Electrical Engineering and Applied Physics, Oregon Graduate Institute of Science and Technology, Beaverton, OR 97006
D. A. Roberts
Affiliation:
Schumacher, 1969 Palomar Oaks Way, Carlsbad, CA 92009
J. G. Wu
Affiliation:
Department of Electrical Engineering and Applied Physics, Oregon Graduate Institute of Science and Technology, Beaverton, OR 97006
A. K. Chadda
Affiliation:
Department of Electrical Engineering and Applied Physics, Oregon Graduate Institute of Science and Technology, Beaverton, OR 97006
H-S. Chen
Affiliation:
Department of Electrical Engineering and Applied Physics, Oregon Graduate Institute of Science and Technology, Beaverton, OR 97006
H. Hockenhull
Affiliation:
Schumacher, 1969 Palomar Oaks Way, Carlsbad, CA 92009
Get access

Abstract

A β-SiC epitaxial growth process, using 1,2-disilylethane (DES), was developed. DSE was selected because it contains an equal number of C and Si atoms and its reported decomposition characteristics suggest that C and Si could be obtained from it at approximately equal rates. Repeatable nucleation and epitaxial growth conditions, giving complete substrate coverage and controlled growth, were established by atmospheric pressure CVD, in an inverted-vertical reactor. A substrate temperature of 1290± 10°C was found to be optimum for β-SiC epilayer nucleation and growth. The maximum β-SiC epitaxial growth rate obtained was 10μms/hr. Undoped β-SiC epilayers were n-type (n≈1016 cm−3 ). DSE synthesis, CVD growth parameters, SiC deposition characteristics and β-SiC epitaxial film properties are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Conwell, E.M., Proc. IRE, 46 (1958) 1281.Google Scholar
2. Hemstreet, L.A. and Fong, C.Y., Proc. 3rd Int. Conf. on SiC, Miami Beach FL, Sept. 17–20 (1973) 284.Google Scholar
3. Phillip, H.R. and Taft, E.A., in “SiC, A High Temperature Semiconductor, Ed. O'Connor, J.R. and Smithens, J., Pergamon Press (1960) 366.Google Scholar
4. Sze, S.M., “Physics of Semiconductor Devices,” Second Ed., John Wiley & Sons, New York (1981).Google Scholar
5. Sze, S.M. and Irwin, J.C., Sol. St. Electron. 11 (1968) 599.Google Scholar
6. Yamanaka, M., Diamon, H., Sakuma, E., Misawa, S. and Yoshida, S., J. Appl. Phys., 81 2 (1987) 599.Google Scholar
7. Van Der Does De Bye, J.A.W., Phillips Res. Repts, 175(1962) 418.Google Scholar
8. Baliga, B.J., “Modern Power Devices,” Wiley & Sons (1978) 6.Google Scholar
9. Ferry, D.K., Phys. Rev. B., 12 6 (1975) 2361.Google Scholar
10. Shinohara, M., Yamanaka, M., Daimon, H., Sakuma, E., Okumura, H., Misawa, S., Endo, K. and Yoshida, S., Japanese J. Appl. Phys., 2, Lett., 27 3(1988) LA34.Google Scholar
11. Silva, W.J., Rosengreen, A. and Marsh, L.L., Contract No. F33615–67-C-1328 (12/1967).Google Scholar
12. Wessels, B.W. and Gatos, H.C., J. Phys. Chem. Sol., 38 (1977) 345.Google Scholar
13. Suzuki, A., Ogura, A., Furukawa, K., Fuji, Y., Shigeta, M. and Nakajima, S., J. Appl. Phys. 64 5 (1988) 2818.Google Scholar
14. Sasaki, K., Sakuma, E., Misawa, S., Yoshida, S. and Gonda, S., Appl. Phys. Lett., 45 1 (1984) 72.Google Scholar
15. Parsons, J.D., Hunter, A.T. and Reynolds, D.C., Proc. Int. Symp. GaAs and Related Compounds, Karuizawa, Japan, 1985; Inst. Phys. Conf. Ser. 79 (1986) 211.Google Scholar
16. Caughey, D.M. and Thomas, R.E., Proc. IEEE. 55 (1967) 2192.Google Scholar
17. von Muench, W. and Pettenpaul, E., J. A. P. 48 11 (1977) 4823.Google Scholar
18. van Opdorp, C. and Vrakking, J., J. A. P. 40 5 (1969) 2320.Google Scholar
19. Patrick, L. and Choyke, W.J., Phys. Rev., B2 (1970) 2255.Google Scholar
20. Slack, G.A., J. Appl. Phys., 35 12 (1964) 3460.Google Scholar
21. Taylor, A. and Jones, R.M., in “SiC, A High Temperature Semiconductor,” Ed. O'Connor, J.R. and Smithens, J., Pergamon Press. (1960) 147.Google Scholar
22. Verma, A.R. and Krishna, P., in “Polymorphism and Polytypism in Crystals,” John Wiley and Sons, New York (1966).Google Scholar
23. Inoue, Z., Komatsu, H., Tanaka, H. and Inomata, Y., Proc. 3rd Int. Conf. on SiC,” Miami Beach, FL, Sept. 17–20 (1973) 191.Google Scholar
24. Adamsky, R.F. and Mertz, K.M., Z. F. Krist., 111 (1959) 350.Google Scholar
25. Leamy, H.J. and Mogab, C.J., Proc. 3rd Intl. SiC Conf, (1973) 64 Google Scholar
26. Nishino, S., Hazuki, Y., Matsunami, H. and Tanaka, T., J. Electrochem. Soc., (1980) 2674.Google Scholar
27. Nishino, S., Powell, J.A. and Will, H.A., A.P.L. 42 5 (1983) 460.Google Scholar
28. Addamiano, A. and Sprague, J.A., A. P. L., 44 5 (1984) 525.Google Scholar
29. Fujiwara, Y., Sakuma, E., Misawa, S. and Yoshida, S., Appl. Phys. Lett. 49 7 ((1986)388.Google Scholar
30. Kong, H.S., Wang, Y.C., Glass, J.T. and Davis, R.F., J. Mater. Res., 3 2 (1988) 521.Google Scholar
31. Nishino, S. and Saraie, J., Proc. Amorphous and Cryst. SiC and Rel. Materials; Springer Proc. In Phys., 43 (1989) 8.Google Scholar
32. von Muench, V. and Pfaffeneder, I., Thin Sol Films, 31 (1976) 39.Google Scholar
33. Kong, H.S., Glass, J.T. and Davis, R.F., J. Mat. Res., 41 (1989) 204 Google Scholar
34. Rutz, R.F. and Cuomo, J.J., Proc. 3rd Int. Conf. on SiC, Miami Beach FL, Sept. 17–20 (1973) 72.Google Scholar
35. Parsons, J.D., Ph.D. Dissertation, UCLA (12/1981).Google Scholar
36. Parsons, J., Bunshah, R. and Stafsudd, O., S.S. Tech. (11/1985) 133 Google Scholar
37. Parsons, J.D., Kruaval, G.B. and Vigil, J.A., in “Amorphous and Cryst. SiC and Related Materials II,” Ed. Rahman, et. al., Springer Verlag, Berlin (1989) 171.Google Scholar
38. Tan, S.H., Beetz, C.P. Jr, Carulli, J.M. Jr, Lin, B.Y. and Cummings, D.F., J. Mater. Res., 7 7 (1992) 1816.Google Scholar
39. Parsons, J.D.: in “Novel Refractory Semiconductors,” Mater, Res. Soc. Symp. Proc., 97(1987)271.Google Scholar
40. Brown, D.W. and Parsons, J.D., U.S. Patent No. 4,923,716 (1990).Google Scholar
41. Parsons, J.D., Interim Tech. Annual Rept. 3, Sept. 1987 - Sept. 1988, Contract No. N60530–85-C-0163 (3/1989).Google Scholar
42. Hazards Research Report No. 7105, Performed for SchumacherGoogle Scholar
42. Parsons, J.D., J. Cryst. Growth, 116 (1992) 387.Google Scholar