Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T23:45:39.193Z Has data issue: false hasContentIssue false

Chemical Reactions During the Thermal Processing of Borazene Polymers

Published online by Cambridge University Press:  28 February 2011

R. Rye
Affiliation:
Sandia National Laboratories,Albuquerque,NM 87185
T. T. Borek
Affiliation:
Department of Chemistry,University of New Mexico,Albuquerque,NM
D. A. Lindquist
Affiliation:
Department of Chemistry,University of New Mexico,Albuquerque,NM
R. T. Paine
Affiliation:
Department of Chemistry,University of New Mexico,Albuquerque,NM
Get access

Abstract

A class of borazene polymers has been developed which consist of a twodimensional array of six-membered borazene rings with the borons of adjacent borazene rings separated by -NH- groups. Pyrolysis of these polymers above ≈1000 C leads to crystalline graphite-like boron nitride (h-BN). The thermal chemistry of thin films of one polymer deposited on KOH etched Al has been examined by thermal decomposition mass spectroscopy (TDMS) and thermal gravimetric analysis (TGA), and the gas evolution chemistry is found to be essentially complete by temperatures of less than 400 C. All products desorb with the same temperature profile and the major desorbing species are NH3 and N2 consistent with a loss of excess nitrogen and hydrogen in the polymer, ang HCI from decomposition of by-products of the synthesis step. Isotope labeling shows that complete exchange occurs below 400 C between the ring and amino bridge nitrogens. Since the formation of ordered crystalline h-BN films requires heating to temperatures of the order of 1000 C, whereas the gas evolution and ring opening chemistry is complete by roughly 400 C, it is concluded that gas evolution chemical Processes are not rate limiting in BN ceramic production.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Rice, R. W., Am. Ceram. Soc. Bull., 62, 889 (1983).Google Scholar
(2) Wynne, K. J. and Rice, R. W., Ann. Rev. Mater. Sci., 14, 297 (1984).Google Scholar
(3) Seyferth, D., “Transformation of Organometallics into Common and Exotic Materials: Design and Activation’, Lamne, R. M. Ed, Nijhoff, M. Publ., Dordrecht, 1988, p. 133.Google Scholar
(4) Paciorek, K. J. L., Harris, D. A. and Kratzer, R. H., J. Polym. Sci. Polym. Chem. 24, 173 (1986).Google Scholar
(5) Paciorek, K. J. L. and Kratzer, R. H., Ceram. Eng. Sci. Proc., 9, 993 (1988).Google Scholar
(6) Paciorek, K. J. L., Krone-Schmidt, W., Harris, D. H., Kratzer, R. H., Wynne, K. J., ACS Symp. Ser., 360, 392(1988).Google Scholar
(7) Mirabelli, M. G. L., Sneddon, L. G., Inorg. Chem., 27, 3271(1988).Google Scholar
(8) Lynch, A. T., Sneddon, L. G., J. Amer. Chem. Soc., 109, 5867(1987).Google Scholar
(9) Rees, W. S. and Seyferth, D., J. Amer. Ceram. Soc., 71, C194(1988).Google Scholar
(10) Narula, C. K., Paine, R. T. and Schaeffer, R., Proc. Mat. Res. Soc., 73, 383(1986).Google Scholar
(11) Narula, C. K., Paine, R. T. and Schaeffer, R., ACS Symp. Ser., 360, 378 (1988).Google Scholar
(12) Narula, C. K., Schaeffer, R., Paine, R. T., Datye, A. K. and Hammetter, W. F., J. Am. Chem. Soc., 109, 5556(1987).Google Scholar
(13) Rye, R. R., Borek, T. T., Lindquest, D. L. and Paine, R. T., J. Amer. Ceram. Soc., in press.Google Scholar
(14) Rye, R. R., Polymer Sci.: Part B: Polymer Physics, 26, 2133(1988).Google Scholar
(15) Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F. and Muitenberg, G. E., “Handbook of X-ray Photoelectron Spectroscopy’, Perkin-Elmer, Corp, Eden Prairie, Minnesota, 1979.Google Scholar
(16) Kwon, C. T. and McGee, H. A., Jr., Inorg. Chem., 9, 2458(1970).Google Scholar
(17) Toeniskoetter, R. H. and Hall, F. R., Inorg. Chem., 2, 29(1963).Google Scholar