Skip to main content Accessibility help
×
Home

Chemical Modification on Hierarchically Structured ZnO Films for Energy Conversion Efficiency Enhancement of Dye-Sensitized Solar Cells

  • Qifeng Zhang (a1), Samson A Jenekhe (a2) and Guozhong Cao (a3)

Abstract

We report the synthesis of ZnO aggregates in the presence of lithium salt and the enhancement on the energy conversion efficiency of dye sensitized solar cells when the photoelectrode films consist of as-synthesized ZnO aggregates. The conversion efficiency for ZnO film consisting of aggregates synthesized with lithium involvement is significantly improved up to 5.8%, which is 32% higher than that of 4.4% obtained for pure ZnO film. Such an enhancement can be attributed to the effect of lithium-induced changes on the morphology and crystallinity of aggregates, the optical absorption of films, and the surface chemistry of ZnO, which provides the film with decreased electron trapping and increased refractive index, and enhances the electronic coupling between the dye molecules and ZnO.

Copyright

References

Hide All
1 Gratzel, M. Journal of Photochemistry and Photobiology a-Chemistry 164, 3 (2004).
2 Gratzel, M. Journal of Photochemistry and Photobiology C-Photochemistry Reviews 4, 145 (2003).
3 Gratzel, M. Journal of Sol-Gel Science and Technology 22, 7 (2001).
4 Suri, P. Panwar, M. Mehra, R. M. Materials Science-Poland 25, 137 (2007).
5 Bergeron, B. V. Marton, A. Oskam, G. Meyer, G. J. Journal of Physical Chemistry B 109, 937 (2005).
6 Sayama, K. Sugihara, H. Arakawa, H. Chemistry of Materials 10, 3825 (1998).10.1021/cm980111l
7 Kroon, J. M. Bakker, N. J. Smit, H. J. P., Liska, P. Thampi, K. R. Wang, P. Zakeeruddin, S. M., Gratzel, M. Hinsch, A. Hore, S. Wurfel, U. Sastrawan, R. Durrant, J. R. Palomares, E., Pettersson, H. Gruszecki, T. Walter, J. Skupien, K. Tulloch, G. E. Progress in Photovoltaics 15, 1 (2007).10.1002/pip.707
8 Kaidashev, E. M. Lorenz, M. Wenckstern, H. von, Rahm, A. Semmelhack, H. C. Han, K. H. Benndorf, G. Bundesmann, C. Hochmuth, H. Grundmann, M. Applied Physics Letters 82, 3901 (2003).
9 Dittrich, T. Lebedev, E. A. Weidmann, J. Physica Status Solidi a-Applied Research 165, R5 (1998).10.1002/(SICI)1521-396X(199802)165:2<R5::AID-PSSA99995>3.0.CO;2-9
10 Otsuka, A. Funabiki, K. Sugiyama, N. Yoshida, T. Chemistry Letters 35, 666 (2006).10.1246/cl.2006.666
11 Zeng, L. Y. Dai, S. Y. Xu, W. W. Wang, K. J. Plasma Science & Technology 8, 172 (2006).
12 Lee, W. J. Suzuki, A. Imaeda, K. Okada, H. Wakahara, A. Yoshida, A. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 43, 152 (2004).10.1143/JJAP.43.152
13 Baxter, J. B. Walker, A. M. Ommering, K. van, Aydil, E. S. Nanotechnology 17, S304 (2006).
14 Baxter, J. B. Aydil, E. S. Applied Physics Letters 86, (2005).
15 Law, M. Greene, L. E. Johnson, J. C. Saykally, R. Yang, P. D. Nature Materials 4, 455 (2005).10.1038/nmat1387
16 Martinson, A. B. F. Elam, J. W. Hupp, J. T. Pellin, M. J. Nano Letters 7, 2183 (2007).10.1021/nl070160+
17 Horiuchi, H. Katoh, R. Hara, K. Yanagida, M. Murata, S. Arakawa, H. Tachiya, M. Journal of Physical Chemistry B 107, 2570 (2003).
18 Keis, K. Lindgren, J. Lindquist, S. E. Hagfeldt, A. Langmuir 16, 4688 (2000).
19 Chou, T. P. Zhang, Q. F. Fryxell, G. E. Cao, G. Z. Advanced Materials 19, 2588 (2007).
20 Zhang, Q. F. Chou, T. P. Russo, B. Jenekhe, S. A. Cao, G. Z. Angew. Chem. Int. Ed. (2008). (Published Online: Feb 19 2008, DOI: 10.1002/anie.200704919)
21 Jezequel, D. Guenot, J. Jouini, N. Fievet, F. Materials Science Forum 152-5, 339, (1994).10.4028/www.scientific.net/MSF.152-153.339
22 Mittemeijer, E. J. Scardi, P. Diffraction analysis of the microstructure of materials, Springer, Berlin; New York (2004).
23 Fan, Z. Y. Lu, J. G. Journal of Nanoscience and Nanotechnology 5, 1561 (2005).
24 Ohya, Y. Saiki, H. Tanaka, T. Takahashi, Y. Journal of the American Ceramic Society 79, 825 (1996).
25 Fujihara, S. Sasaki, C. Kimura, T. Journal of the European Ceramic Society 21, 2109 (2001).
26 Ishimaru, A. Wave propagation and scattering in random media, Academic Press, New York (1978).
27 Hulst, H. C.v. d. Light scattering by small particles, Wiley, New York (1957).
28 Aghamalyan, N. R. Goulanian, E. K. Hovsepyan, R. K. Vardanyan, E. S. Zerrouk, A. F. Physica Status Solidi a-Applied Research 199, 425 (2003); X. S. Wang, Z. C. Wu, J. F. Webb, Z. G. Liu, Applied Physics a-Materials Science & Processing 77, 561 (2003).10.1002/pssa.200306678
29 Chou, T. P. Zhang, Q. F. Cao, G. Z. Journal of Physical Chemistry C 111, 18804 (2007).
30 Kakiuchi, K. Hosono, E. Fujihara, S. Journal of Photochemistry and Photobiology a-Chemistry 179, 81 (2006).
31 Hagfeldt, A. Gratzel, M. Accounts of Chemical Research 33, 269 (2000).
32 Gratzel, M. Progress in Photovoltaics 8, 171 (2000).10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U

Keywords

Chemical Modification on Hierarchically Structured ZnO Films for Energy Conversion Efficiency Enhancement of Dye-Sensitized Solar Cells

  • Qifeng Zhang (a1), Samson A Jenekhe (a2) and Guozhong Cao (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed