Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-22T02:01:32.009Z Has data issue: false hasContentIssue false

The Chemical Environment Of Er3+ In A-Si:Er:H And A-Si:Er:O:H

Published online by Cambridge University Press:  10 February 2011

Leandro R. Tessler
Affiliation:
Instituto de Física “Gleb Wtaghin’, UNICAMP, C.P. 6165, 13083–970 Campinas, SP, Brazil, tessler@ifi.unicamp.br
Cínthia Piamonteze
Affiliation:
Instituto de Física “Gleb Wtaghin’, UNICAMP, C.P. 6165, 13083–970 Campinas, SP, Brazil
Ana Carola Iñguez
Affiliation:
Instituto de Física “Gleb Wtaghin’, UNICAMP, C.P. 6165, 13083–970 Campinas, SP, Brazil
M. C. Martins Alves
Affiliation:
Laboratório Nacional de Luz Síncrotron, C. P. 6192, 13083–970, Campinas, SP, Brazil
H. Tolentino
Affiliation:
Laboratório Nacional de Luz Síncrotron, C. P. 6192, 13083–970, Campinas, SP, Brazil
Get access

Abstract

We have measured extended x-ray absorption fine structure (EXAFS) of the Er LIII edge in a-Si:Er:O:H with different concentrations of Er and O. The samples were prepared by reactive RF co-sputtering from a silicon target partially covered with metallic erbium platelets. They present the characteristic Er 3+ photoluminescence at 1.54 μm as deposited. The FFT of the Er EXAFS provides two well separated peaks. The characteristics of the first peak resemble those of Er2O3. We associate the first neighbor shell with oxygen atoms, even in non intentionally oxygenated samples. The average coordination and Er-O separation are significantly smaller than in Er2O3. This may be the reason why Er3+ luminescence in a-Si:H presents small temperature quenching. The second shell is interpreted as being composed of silicon atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rare Earth Doped Semiconductors, edited by Pomrenke, G. S., Klein, P. B., and Langer, D. W., (Mater. Res. Soc. Proc. 301, Pittsburgh, PA 1993); Rare Earth Doped Semiconductors II, edited by A. Polman, S. Coffa and R. Schwartz, (Mater. Res. Soc. Proc. 422, Pittsburgh, PA 1996).Google Scholar
2. Coffa, S., Franzò, G., Priolo, F., Polman, A. and Serna, R., Phys. Rev. B 49, 16313 (1994).Google Scholar
3. Shin, J. H., Serna, R., van den Hoven, G. N., Polman, A., van Sark, W. G. J. H. M. and Vredenberg, A. M., Appl. Phys. Lett. 68, 997 (1996).Google Scholar
4. Bressler, M. S., Gusev, O. B., Kudoyarova, V. Kh., Kuznetsov, A. N., Pak, P. E., Terukov, E. I., Yassievitch, I. E., Zakharchenya, B. P., Fuhs, W. and Sturm, A., Appl. Phys. Lett. 67, 3599 (1995).Google Scholar
5. Zanatta, A. R., Nunes, L. A. O. and Tessler, L. R., Appl. Phys. Lett. 70, 511 (1997).Google Scholar
6. Adler, D. L., Jacobson, D. C., Eaglesham, D. J., Marcus, M. A., Benton, J. L., Poate, J. M. and Citrin, P. H., Appl. Phys. Lett. 61, 2128 (1992).Google Scholar
7. Terrasi, A., Franzò, G., Coffa, S., Priolo, F., Acapito, F. D' and Mobilio, S., Appl. Phys. Lett. 70, 1712 (1997).Google Scholar
8. Masterov, V. F., Nasredinov, F. S., Seregin, P. P., Kudoyarova, V. Kh., Kuznetsov, A. N. and Terukov, E. I., Appl. Phys. Lett. 72, 728 (1998).Google Scholar
9. Tessler, L. R. and Ifiiguez, A. C., in Amorphous Silicon Technology -1998, (Mater. Res. Soc. Proc., Pittsburgh, PA 1998).Google Scholar
10. Tolentino, H., Cezar, J.C., Cruz, D.Z., Compagnon-Cailhol, V., Tamura, E., M.C. Martins Alves J. Synchrotron Rad. 5, (1998) in press.Google Scholar
11. International workshop on standards and criteria in x-ray absorption spectroscopy, Physics B 158, 701 (1989).Google Scholar
12. Ressler, T., J. Physique IV 7, C2-269 (1997).Google Scholar
13. Tessler, L. R. and Zanatta, A. R., J. Non-Cryst. Sol., (1998) in press.Google Scholar
14. Polman, A., J. Appl. Phys. 82, 1 (1997).Google Scholar