Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T12:04:33.861Z Has data issue: false hasContentIssue false

Chemical Beam Epitaxy of III-V Semiconductor Heterostructures

Published online by Cambridge University Press:  26 February 2011

W. T. Tsang*
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

This paper reviews briefly some of the recent progress in chemical beam epitaxy (CBE) for the preparation of GaInAs(P)/InP and GaAs/AlGaAs quantum wells, superlattices, and heterostructure devices. Chemical beam epitaxy can be viewed as a chemical vapor deposition process but with the pressure inside the growth chamber sufficient, ow (< 10-4 torr) so that the transport of the gaseous reactants becomes molecular beam instead of via viscous flow. This not only eliminates the complicated gas phase reactions and the stagnant boundary layer above the substrate through which the reactants have to diffuse, but also allows for quick transitions of material compositions and dopings as those achievable by molecular beam epitaxy (MBE). For the growth of HI-V semiconductors, the group Inl elements are derived by the pyrolysis of organometallics (or inorganometallics such as dopant gases) on the heated substrate surface, while the group V elements are derived by the thermal decomposition of hydrides using a high temperature cracker. For the growth of group IV semiconductors, beams of inorganometallic compounds are used. Thus, both organometallic and inorganometallic compounds can be used as starting sources. There are two other alternatives: the gas source MBE (GSMBE), which uses group III elements evaporated from solid sources as in MBE and thermally decomposed hydrides, and the metalorganic MBE (MOMBE), which uses metalorganics as group III sources and group V elements evaporated from solid sources as in MBE. These other processes will not be reviewed here. Introd

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tsang, W. T., Appl. Phys. Lett. 45, 1234 (1984)Google Scholar
2.Panish, M. B., Prog. Crystal Growth and Charact. 12, 1 (1986).Google Scholar
3.Morris, F. J. and Fakui, H., J. Vac. Sci. Technol. 11, 506 (1974)Google Scholar
4.Calawa, A. R., Appl. Phys. Lett. 38, 701 (1981)Google Scholar
5.Tokumitsu, E., Kudow, Y., Konagai, M., and takahashi, K., J. Appl. Phys. 55, 3163 (1984)Google Scholar
6.Tsang, W. T. and Schubert, E. F., Appl. Phys. Lett. 49, 220 (1986).Google Scholar
7.Tsang, W. T., Dayem, A. H., Chiu, T. H., Cunningham, J. E., Schubert, E. F., Ditzenberger, J. A. and Shah, J., Appl. Phys. Lett. 49, 170 (1986)Google Scholar
8.Tsang, W. T. and Miller, R. C., Appl. Phys. Lett. 48, 1288 (1986).Google Scholar
9.Tsang, W. T., Chiu, T. H., Cunningham, J. E., Robertson, A., Appl. Phys. Lett. 50, 1376 (1987)Google Scholar
10.Robertson, A., Chiu, T. H., Tsang, W. T. and Cunningham, J. E., J. Appl. Phys. (1988).Google Scholar
11.Tsang, W. T., Schubert, E. F., Chiu, T. H., Cunningham, J. E., Burkhardt, E., Ditzenberger, J. A., Agyekum, E., Appl. Phys. Lett. 51, 761 (1987).Google Scholar
12.Takeda, Y., GaInAsP Alloy Semiconductors edited by Pearsall, T. P., (John Wiley & Sons, New York) Chapter 9, (1983) p. 213241.Google Scholar
13.Chiu, T. H., Tsang, W. T., Schubert, E. F., and Agyekum, E., Appl. Phys. Lett. 51, 1109 (1987).Google Scholar
14.Tsang, W. T., Chiu, T. H., Chu, S. N. G., Ditzenberger, J. A., Appl. Phys. Lett. 46, 1086 (1985).Google Scholar
15.Temkin, H., Panish, M. B., Petroff, P. M., Hamm, R. A., Vandenberg, J. M., Sumski, S., Appl. Phys. Lett. 47, 394 (1985).Google Scholar
16.Panish, M. B., Temkin, H., Hamm, R. A. and Chu, S. N. G., Appl. Phys. Lett. 49, 164 (1986).Google Scholar
17.Sauer, R., Harris, T. D. and Tsang, W. T., Phys. Rev. B 34, 9023 (1986).Google Scholar
18.Tsang, W. T., Schubert, E. F., Chu, S. N. G., Tai, K. and Sauer, R., Appl. Phys. Lett. 50, 540 (1987).Google Scholar
19.Tsang, W. T., Schubert, E. F., Chu, S. N. G., Tai, K. C., Sauer, R., Chiu, T. H., Cunningham, J. E., and Ditzenberger, J. A., Inst. Phys. Conf. Ser. No. 83, Chapter 3 “GaAs and Related Compounds” 93 (1986).Google Scholar
20.Tsang, W. T. and Campbell, J. C., Appl. Phys. Lett. 48, 1416 (1986).Google Scholar
21.Campbell, J. C., Tsang, W. T., Qua, G. J., Johnson, B. C. and Bowers, J. E., IEDM (1987).Google Scholar
22.Tsang, W. T., Appl. Phys. Lett. 48, 511 (1986).Google Scholar
23.Tsang, W. T., Appl. Phys. Lett. 50, 63 (1987).Google Scholar
24.Tsang, W. T., Appl. Phys. Lett. 49, 1010 (1986).Google Scholar
25.Tai, K., Jewell, J. L., Tsang, W. T., Temkin, H., Panish, M. B. and Twu, Y., Appl. Phys. Lett. 50, 795 (1987).Google Scholar
26.Tsang, W. T., Chang, A. M., Ditzenberger, J. A., Tabatabaie, N., Appl. Phys. Lett. 49, 960 (1986).Google Scholar
27.Schubert, E. F., Tsang, W. T., Feuer, M. D., and Mankiewich, P. M., IEEE Elect. Dev. Lett. (1988).Google Scholar
28.Chiu, T. H., Tsang, W. T., Ditzenberger, J. A., Tu, C. W., Ren, F., Wu, C. S., J. Vac. Sci. Technol. B (1988).Google Scholar
29.Shih, H. D., Kim, B., and Wurtele, M., Elect. Lett. (1987).Google Scholar
30.Kondo, K., Ishikawa, H., Sasa, S., Sugiyama, Y., and Hiyamizu, S., Jap. J. Appl. Phys. 25, L52 (1986).Google Scholar
31.Vuong, T. H. H., Tsui, D. C., and Tsang, W. T., Appl. Phys. Lett. 50, 1004 (1987)Google Scholar
32.Vuong, T. H. H., Tsui, D. C., and Tsang, W. T., Appl. Phys. Lett. (1988).Google Scholar
33.Choi, K. K., Levine, B. F., Malik, R. J., Walker, J. and Bethea, C. G., Phys. Rev. B 35, 4172 (1987)Google Scholar