Skip to main content Accessibility help

Charge-Transfer Properties of Dye-Sensitized Solar Cells via Long-Range-Corrected Density Functional Theory

  • Bryan Matthew Wong (a1)


The excited-state properties in a series of solar cell dyes are investigated with a long-range-corrected (LC) functional which provides a more accurate description of charge-transfer states. Using time-dependent density functional theory (TDDFT), the LC formalism correctly predicts a large increase in the excited-state electric dipole moment of the dyes with respect to that of the ground state, indicating a sizable charge separation associated with the S1 ← S0 excitation. The performance of the LC-TDDFT formalism, illustrated by computing excitation energies, oscillator strengths, and excited-state dipole moments, demonstrates that the LC technique provides a consistent picture of charge-transfer excitations as a function of molecular size. In contrast, the widely-used B3LYP functional severely overestimates excited-state dipole moments and underestimates the experimentally observed excitations, especially for larger dye molecules. The results of the present study emphasize the importance of long-range exchange corrections in TDDFT for investigating the charge-transfer dynamics in solar cell dyes.



Hide All
1. O'Regan, B. and Grätzel, M., Nature 414, 338 (1991).
2. Peter, L. M., Phys. Chem. Chem. Phys. 9, 2630 (2007).
3. Hara, K., Sato, T., Katoh, R., Furube, A., Ohge, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H., and Arakawa, H., J. Phys. Chem. B 107, 597 (2003).
4. Hara, K., Kurashige, M., Dan-oh, Y., Kasada, C., Shinpo, A., Suga, S., Sayama, K., and Arakawa, H., New. J. Chem. 27, 783 (2003).
5. Hara, K., Wang, Z.-S., Sato, T., Furube, A., Katoh, R., Sugihara, H., Dan-oh, Y., Kasada, C., and Shinpo, A., J. Phys. Chem. B 109, 15476 (2005).
6. Nazeeruddin, M. K., Péchy, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G. B., Bigonozzi, C. A., and Grätzel, M., J. Am. Chem. Soc. 123, 1613 (2001).
7. Hagberg, D. P., Edvinsson, T., Marinado, T., Boschloo, G., Hagfeldt, A., and Sun, L., Chem. Commun. 21, 2245 (2006).
8. Liang, M., Xu, W., Cai, F., Chen, P., Peng, B., Chen, J., and Li, Z., J. Phys. Chem. C 111, 4465 (2007).
9. Kurashige, Y., Nakajima, T., Kurashige, S., Hirao, K., and Nishikitani, Y., J. Phys. Chem. A 111, 5544 (2007).
10. Gill, P. M. W., Mol. Phys. 88, 1005 (1996).
11. Savin, A., Recent Developments and Applications of Modern Density Functional Theory, ed. Seminario, J. M. (Elsevier, Amsterdam, 1996), pp. 327354.
12. Wong, B. M. and Cordaro, J. G., J. Chem. Phys. 129, 214703 (2008).
13. Iikura, H., Tsuneda, T., Yanai, T., and Hirao, K., J. Chem. Phys. 115, 3540 (2001).


Charge-Transfer Properties of Dye-Sensitized Solar Cells via Long-Range-Corrected Density Functional Theory

  • Bryan Matthew Wong (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed