Skip to main content Accessibility help
×
Home

Characterizing the Microstructure and Strengthening Mechanisms in Cryomilled Al 5083

  • G. Lucadamo (a1), N.Y.C. Yang (a1), C. SanMarchi (a1) and E. J. Lavernia (a2)

Abstract

Cryomilling is a method of producing nanostructured morphologies from a range of starting metals and alloys. This process substantially increases the strength of lightweight alloys. In this work, we characterize the microstructure of Al alloy 5083 following cryomilling, hot isostatic pressing (HIP), and extrusion. The yield strength of the cryomilled 5083 Al is approximately twice that of conventional wrought 5083 Al and the room temperature microhardness essentially is unchanged following annealing at temperatures that approach 0.8 Tm. Using complementary transmission electron microscopy (TEM) techniques such as energy filtered (EFTEM) and weak beam imaging we investigate the mechanisms responsible for the mechanical properties. A survey of the microstructure identifies several sources of strengthening. These include: submicron grain sizes in the as-extruded material, precipitates, and metal-oxide phases. Also, the Mg in the alloy is expected to contribute some solid solution strengthening. TEM images show that lattice dislocations frequently are pinned at the precipitate interfaces. Continued precipitation and grain boundary pinning by oxide particles at elevated temperatures may account for the persistence of hardness following annealing.

Copyright

References

Hide All
1 Chang, S-Y., Lee, J.G. Park, K-T., and Shin, D.H. Mater. Trans. 42 (2001) 1074.
2 Lee, Z., Zhou, F., Valiev, R.Z. Lavernia, E.J. and Nutt, S.R. Scripta Mater. 51 (2004) 209.
3 Lee, Y.B. Shin, D.H. Park, K-T., Nam, W.J. Scripta Mater. 51 (2004) 355.
4 Tellkamp, V.L. Dallek, S., Cheng, D., and Lavernia, E.J. J. Mater. Res. 16 (2001) 538.
5 Hayes, R.W. Tellkamp, V., and Lavernia, E.J. J. Mater. Res. 15 (2000) 2215
6 Zhou, F., Lee, J., and Lavernia, E.J. Scripta Mater. 44 (2001) 2013.
7 Han, B.Q. Mohamed, F.A. and Lavernia, E.J. J. Mat. Sci. 38 (2003) 3319.
8 Liao, X.Z. Huang, J.Y. Zhu, Y.T. Zhou, F., and Lavernia, E.J. Phil Mag A 83 (2003) 3065.
9 Zhou, F., Liao, X.Z. Zhu, Y.T. Dallek, S., and Lavernia, E.J. Acta Mater. 51 (2003) 2777.
10 Han, B.Q. Lee, Z., Nutt, S.R. Lavernia, E.J. and Mohamed, F.A. Metall. Mat. Trans. A 34 (2003) 603.
11 Lin, Y., Zhou, Y., Hayes, R.W. and Lavernia, E.J. Scripta Mater. 51 (2004) 71.
12 Aluminum: Properties and Physical Metallurgy, (ASM, Metals Park, OH, 1984) pp. 227233.
13 Metals Handbook Desk Edition, (ASM, Metals Park, OH, 1985) p. 6.25.
14 Metals Handbook. Vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. (ASM International. 1990). p. 93.
15 Jones, R.H. Gertsman, V.Y. Vetrano, J.S. Windisch, C.F. Jr, Scripta Mater. 50 (2004) 1355.
16 Norstrom, L.A. Scand, J. Metall. 5 (1976) 159.
17 Hertzberg, R.W. Deformation and Fracture Mechanics of Engineering Materials 3rd Ed., (Wiley, New York 1989) p. 135.

Characterizing the Microstructure and Strengthening Mechanisms in Cryomilled Al 5083

  • G. Lucadamo (a1), N.Y.C. Yang (a1), C. SanMarchi (a1) and E. J. Lavernia (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed